正規咬合者の開閉口運動における下顎切歯および下顎頭の運動解析

廣松伸一，鶴田正彦，築本康夫，福井只美，常盤　崇，桑原洋助

鶴見大学歯学部矯正学教室（主任：桑原　洋助 教授）

[受付：平成10年2月2日]

An analysis of mandibular incisor and condylar paths during maximum jaw opening and closing movement in subjects with normal occlusion

Shinichi Hiromatsu, Masahiko Tsuruta, Yasuo Wakimoto, Tadayoshi Fukui,
Hajime Tokiwa, Yosuke Kuwahara

Department of Orthodontics, Tsurumi University School of Dental Medicine

(Director: Prof. Yosuke Kuwahara)

[Received: February 2, 1998.]

Key words: mandibular kinetics, incisor path, condylar path, normal occlusion, velocity curve

Abstract: The aim of this study was to analyze the mandibular movement paths in subjects with normal occlusion. Fourteen adults who were free of signs and symptoms of TMJ disorders were selected. The movements of the incisal point and condylar point during maximum jaw opening-closing phase were recorded and analyzed with the Gnathohexagrap, JM-1000, a comprehensive analyzing system for stomatognathic function. The movement paths of the incisor and condyles were analyzed for: (1) Maximum displacement, (2) maximum velocity, (3) the amount and rate of displacement reached to the maximum velocity, (4) pattern of velocity curve. Maximum displacements of incisor and condylar paths were 50.2 mm and 15.5 mm, respectively. Maximum velocities of incisor movements during opening and closing phases were 289.6 mm/s and 330.6 mm/s and those of condylar movement were 90.8 mm/s and 160.6 mm/s, respectively. The amount and rate of displacement reached to the maximum velocities of incisor movement during the two phases were 16.1 mm (32.1%) and 25.5 mm (52%). Those of condylar movement were 9.5 mm (59%) and 8.1 mm (52%), respectively. Three patterns of velocity curves were found in both incisor paths and condylar paths. The results of this study indicated that the analyzing parameters for incisor movement path and condylar movement path of this study might be useful for mandibular kinetics.

抄録 顎口腔機能異常のない正常咬合者14名（男子7名、女子7名）について、最大開閉口運動の測定を行ない、下顎切歯および下顎頭の運動解析を行った。測定には、顎口腔機能総合解析システム（ナオハキサグラフ）を用い、以下の項目を解析した。 1）最大移動量、（2）最大速度、（3）最大速度発現時の移動量および最大移動量に対する比率、（4）速度曲線パターン。 下顎頭の最大移動量は、50.2±3.9 mm、関口相での最大速度は289.6±93.1 mm/s、閉口相では330.6±75.2 mm/sであった。また、最大速度発現時の移動量は、関口相21.7±0.2 mm、閉口相25.5±0.3 mm

連絡先：〒230-0063 横浜市鶴見区鶴見2-1-3
一、緒言

歯科臨床において、顎口腔機能異常を主訴とする患者、あるいは併発している患者の数は年々増加していると報告されている。また、顎関節症が社会的な話題として取り上げられ、歯科関節症の増加と相まって、その診断および治療の必要性が注目されている。従来診断に必要な情報を、主として直接的診断法やX線撮影に頼っていたが、現在では確定診断にCTやMRIなどの不可欠な装置である。しかし、X線撮影やMRIによる画像情報は、いわゆる静的データであり、顎関節運動に伴う組織の動的動きを把握することは困難である。

顎機能をより動的に捉えようとする研究は、従来より多く行われてきている。さらに顎運動に伴う筋活動、下顎運動、顎関節の異常変形など、顎機能異常の診断に有用な情報を得ようとする試みが、次第に集積されてきた。近年、坂東らによる顎運動解析装置の開発や石岡・林らによる同様な装置の製作に始まり、最近の電子技術の進歩はさらに精度や操作性の優れた装置の出現を促した。その結果、顎運動解析が顎機能異常診断の上で有用であることが、認識され始めていた。

我々は、3次元6自由度の顎運動測定データを得ることのできる顎機能総合解析装置を最近開発した。この装置は、顎関節点LEDの運動軌跡をCCDカメラにより捉え、コンピュータによる演算処理を行い、下顎骨の位置の点における運動特性を的確に把握することができ、この装置を用いて顎運動機能に関する各種データを採得し、顎機能異常の診断に有功なパラメータを検索を行っている。今回の測定結果は、正常咬合者に関する顎運動データのうち、最大開閉口運動における切歯点および左右下顎頭点の運動軌跡について解析し、切歯点および下顎頭点の最大移動量と最大速度、ならびに速度曲線について検討したので報告する。

II. 資料と研究方法

1. 資 料

被験者として、本学学生のうち臨床診療の結果、顎口腔機能異常の無し正常咬合者14名（男子7名、女子7名）、平均年齢21.1歳を選択した。

2. 測定方法

顎運動測定は、顎機能総合解析システム（ナツメキサクラフ、J M-1000、小野製作）を用いた。顎運動測定にあたっては、被験者の下顎切歯部に接着したデジタルを介して、下顎フェイスボウを装着し、またヘッドフレームを被験者頭部に装着した。ヘッドフレームは基準平面上にP平面と平行にすることに位置を、運動解析方法として、切歯点は下顎関節切歯点を、左右の下顎頭点は被験者閉口運動を行わせ、顎関節

図1 ヘッドフレームと下顎フェイスボウを装着した被験者

Fig. 1 A subject with head frame and mandibular face bow
正常咬合者の開閉口運動における下顎切歯および下顎頭の運動解析

表1 切歯データの男女差の検定
Table 1 Results of Student's t-test for the difference of incisor data between sexes

| | 開口相 | 閉口相 | 最大移動量
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大速度</td>
<td>移動量</td>
<td>移動量比</td>
</tr>
<tr>
<td>男性</td>
<td>355.4</td>
<td>16.2</td>
<td>30.7</td>
</tr>
<tr>
<td>n=7</td>
<td>(± 83.3)</td>
<td>(± 2.5)</td>
<td>(± 4.9)</td>
</tr>
<tr>
<td>女性</td>
<td>223.8</td>
<td>16.0</td>
<td>33.5</td>
</tr>
<tr>
<td>n=7</td>
<td>(± 54.8)</td>
<td>(± 6.9)</td>
<td>(± 11.8)</td>
</tr>
<tr>
<td>有意性</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

() ：1 SD NS ：有意差無

表2 下顎頭データの男女差の検定
Table 2 Results of Student's t-test for the difference of condylar data between sexes

| | 開口相 | 閉口相 | 最大移動量
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大速度</td>
<td>移動量</td>
<td>移動量比</td>
</tr>
<tr>
<td>男性</td>
<td>102.4</td>
<td>9.1</td>
<td>56.8</td>
</tr>
<tr>
<td>n=14</td>
<td>(± 35.7)</td>
<td>(± 4.1)</td>
<td>(± 14.6)</td>
</tr>
<tr>
<td>女性</td>
<td>79.2</td>
<td>9.8</td>
<td>61.3</td>
</tr>
<tr>
<td>n=14</td>
<td>(± 27.8)</td>
<td>(± 3.8)</td>
<td>(± 18.7)</td>
</tr>
<tr>
<td>有意性</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

() ：1 SD NS ：有意差無

部触診により求めた上皮表面の点を下顎頭点とし、任意点指示装置（ポインターア）にて入力、各点の運動軌跡を記録した（図1）。

被験者の最大閉鎖口運動は、築山らの方法1）の一部を改変したもので、咬頭嵌合位からの関閉口運動を任意に行わせた。その際、開口は出来るだけ大きく、また関閉口を速く繰り返すよう指示した。結果運動記録は15秒間行なった。なお、測定を行う前に被験者には、測定の主旨を説明し、同意を得た。

3. 解析方法

記録した測定データのうち、運動開始後、第2ストロックから第6ストロックまでの連続した5回の閉鎖口運動について解析した。なお、下顎頭運動については、14名の被験者の左右28関節を対象とした。

最大閉鎖口運動における、切歯点および下顎頭点運動軌跡を関口相および閉口相に分けて以下の項目を設定し解析した。すなわち、最大移動量（咬頭嵌合位から最大開口位までの3次元的直線距離）、最大速度（咬頭嵌合位から最大開口位の間の到達した3次元的最大移動速度）である。さらに最大速度発現時における各点の移動量および最大移動量に対する比率を算出した。

III. 結果

計測データに関して、被験者の間における男女差について平均値の差の検定を行った。その結果は、表1および表2に示した。測定値に関しては、男女の値には統計的有意差は認められなかった。さらに、4名の被験者について、異なった日時で測定を行い、各々のデータについての再現性を検討した。その結果は、表3および表
切歯点のデータの計測に関する再現性の検定

Table 3 Results of Student's t-test for the reliability of repeated measurement on the incisor data

<table>
<thead>
<tr>
<th></th>
<th>開口相</th>
<th>閉口相</th>
<th>最大移動量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大速度 (mm/s)</td>
<td>移動量 (mm)</td>
<td>移動量比 (%)</td>
</tr>
<tr>
<td>計測-1 n=4</td>
<td>310.0 (± 56.9)</td>
<td>14.8 (± 2.1)</td>
<td>28.1 (± 3.2)</td>
</tr>
<tr>
<td>計測-2 n=4</td>
<td>378.9 (± 107.3)</td>
<td>18.3 (± 3.9)</td>
<td>29.5 (± 4.0)</td>
</tr>
<tr>
<td>有意差</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

（）: 1SD NS: 有意差無

下顎頭点のデータの計測に関する再現性の検定

Table 4 Results of Student's t-test for the reliability of repeated measurement on the condylar data

<table>
<thead>
<tr>
<th></th>
<th>開口相</th>
<th>閉口相</th>
<th>最大移動量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大速度 (mm/s)</td>
<td>移動量 (mm)</td>
<td>移動量比 (%)</td>
</tr>
<tr>
<td>計測-1 n=8</td>
<td>110.2 (± 11.9)</td>
<td>9.8 (± 1.5)</td>
<td>58.0 (± 9.9)</td>
</tr>
<tr>
<td>計測-2 n=8</td>
<td>96.6 (± 16.7)</td>
<td>6.7 (± 2.6)</td>
<td>51.3 (± 13.8)</td>
</tr>
<tr>
<td>有意差</td>
<td>NS</td>
<td>※</td>
<td>NS</td>
</tr>
</tbody>
</table>

※: P<0.05 NS: 有意差無

4に示した。切歯点データにおいては、統計的有意差は認められなかった。一方、下顎頭点データについては、最大移動量および開口相での最大速度発現時の移動量に関する項目においてのみ、統計的有意差が認められた。また、下顎頭点における左右差は認められなかった（表5）。今回の測定値の解析にあたっては、男性および女性の測定値および下顎頭左右の計測値に関しては、各々合算し平均化した。また再現性試験を行った4名に関しては、表4の計測1のデータを用いた。

15秒間の最大関口運動での平均運動回数は、13.4回であった。1回運動に要する平均時間は1.3±0.5秒であり、咬合相時間は0.4±0.2秒、開口相時間は平均0.6±0.2秒、閉口相時間は0.4±0.2秒であった。

2. 切歯運動解析結果

切歯点の最大移動量は、50.2±3.9 mmであった。最大速度は、開口相では289.6±93.1 mm/s、閉口相では330.6±75.2 mm/sであった。また、最大速度発現時の移動量は、開口相で16.1±0.2 mm、閉口相で25.5±0.3 mmであった。最大速度発現時の移動量の最大移動量に対する比率は、開口相で32.1±2.0%、閉口相で59.0±3.7%であった（図2、3）。

3. 速度曲線パターン

切歯点および下顎頭点の速度曲線には、3種のパターン
表5 下顎頭点データの左右の検定
Table 5 Results of Student’s t-test for the difference of data between right and left condyle

<table>
<thead>
<tr>
<th>開口相</th>
<th>最大速度 (m/s)</th>
<th>移動量 (mm)</th>
<th>移動量比 (%)</th>
<th>閉口相</th>
<th>最大速度 (m/s)</th>
<th>移動量 (mm)</th>
<th>移動量比 (%)</th>
<th>最大移動量 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>左下顎頭</td>
<td>89.2 (± 10.9)</td>
<td>9.8 (± 3.4)</td>
<td>59.4 (± 1.5)</td>
<td>右下顎頭</td>
<td>92.3 (± 22.0)</td>
<td>9.1 (± 0.7)</td>
<td>58.6 (± 4.9)</td>
<td>n=14</td>
</tr>
<tr>
<td>n=14</td>
<td>157.6 (± 18.0)</td>
<td>8.2 (± 3.7)</td>
<td>52.4 (± 1.9)</td>
<td>n=14</td>
<td>163.6 (± 23.9)</td>
<td>7.9 (± 0.2)</td>
<td>51.6 (± 1.7)</td>
<td>(± 1.6)</td>
</tr>
<tr>
<td>有意差</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>有意差</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

()：１ＳＤ NS：有意差無

図2 切歯点軌跡の最大移動量
Fig. 2 Maximum displacement of incisor point path

図3 切歯点軌跡の速度曲線
Fig. 3 Results of the analysis of the velocity curve of incisor point

正常咬合者の開口運動における下顎切歯および下顎頭の運動解析
顎機能診断における顎運動解析の位置付け

1. 顎機能診断における顎運動解析の位置付け

近年、歯科領域での顎関節症患者の増加と相まって、その診断および治療方法の早急な確立が要請されている。しかし、顎関節症を惹起させる要因が複雑であるため、診断方法や治療法は未だ確立されていないのが現状である。従来、診断に必要な情報は主として臨床診察やX線検査に依っていたが、近年では、確定診断にはCTやMRIが不可欠なものとなっている。X線検査やMRIによ る画像情報は、顎関節部構造を明らかにするためのいわゆる形態的データである。一方、下顎運動に伴う関節頭の動きや周囲組織の反応を把握するためには、機能検査が必要であると考えられる。

顎機能を統合的に捉えるという研究は、従来より多く行われてきており、顎運動はもとより、顎運動に伴う筋活動、顎関節部の動きや発生する雑音などを多角的に測定し、顎機能異常の診断に有用な情報を得ようとする試みが成されてきている。顎運動を3次元的に計測するため、藤村ら23、上田ら24、黒川ら25、篠山ら26による研究が行われてきた。

本研究には、著者が開発した顎口腔機能総合解析装置を使用した66。この装置は、生体上に設置した標識点LEDの運動軌跡をCCDカメラにより捕捉し、コンピュータによる演算処理を経て、3次元自由度の運動測定データを得ることのできるものである。これにより下顎骨上任意の点における運動軌跡を的確に把握し、表現することができる。また測定精度は、X軸、Y軸およびZ軸の各軸方向あたり0.15 mmであり、解析点の測定誤差は0.05 mmである。さらに切歯点や下顎頭点の運動に伴う移動距離や運動速度の測定は、3次元の空間距離として算出できる特徴を有している。中矢状面平や前顎面などに投影する、2次元の計測と比較し、より生体運動を忠実に再現することを可能にしている。

2. 研究対象

顎機能に異常を持つ患者について、その顎機能測定を行い、得られたデータを元に診断および治療方針に反映させることは重要である。従来より坂東ら、林ら、末次らは、独自の測定器を用いて、診断支援のためのデータを蓄積している27・28。我々は、ナノパーセクグラフを用いて、顎運動に伴う各種データを採取し、この機器による顎機能異常の自動診断化を目指している29。そのためには、診断に有効なパラメータの抽出が不可欠である。本研究のため、統合的に機能的にも正常な成人男女を選択し、顎運動測定を行った。今回選択した対象者は、...

図4 下顎頭点軌跡の最大移動量
Fig. 4 Maximum displacement of condylar point path

図5 下顎頭点軌跡の速度曲線
Fig. 5 Results of the analysis of the velocity curve of condylar point

IV. 考察

顎機能診断における顎運動解析の位置付け

顎機能診断における顎運動解析の位置付け
1相性

図6 切歯点軌跡の速度曲線パターン
Fig. 6 Patterns of the velocity curve of incisor point

2相性

図7 下顎頭点軌跡の速度曲線パターン
Fig. 7 Patterns of the velocity curve of condylar point

多相性

矯正歯科医師による診査に際して、顔機能異常が無く、形態的に正常咬合とされた成人男女14名（男性7名、女性7名）である。

3．解析項目と測定値の処理方法について

顔機能測定については従来より論議が多く、どの様な顔運動あるいはどの様な顔位で解析するのが良いかという基準はまだ明確ではない。被験者として、限界運動、咀嚼運動、慣性閉口運動などが用いられており、解析パラメータとして運動移動量、運動周期、運動速度、運動加速度などがある。

本研究では、被験者として最大速度開口運動を選択したのは、（1）顔の運動範囲が広い、（2）被験者にとって簡単な運動であり、測定に際しての負担が少ない、（3）再現性が高いなどの理由による。最大開口運動には、被験者に自由な運動を行わせる自律的運動とメトロノームなどに合わせて一定のリズムで行う方法がある。我々の行った予備実験によると、メトロノームに合わせた運動では、被験者が顔運動を行う際に、リズムに合
日本歯科学研究会

図8 開口相における速度曲線パターンの分類
Fig. 8 Classification of velocity curve pattern during opening phase

図9 閉口相における速度曲線パターンの分類
Fig. 9 Classification of velocity curve pattern during closing phase

わせてることを意識し過ぎることにより、かえって運動にバラツキができてしまい、速度解析における再現性に問題のあることが判明した。そこで本研究では、被験者には自由な開閉口運動を行わせた。関節音の評価を行った場合には、メトロノームに合わせて最大開閉口運動が適していると言う報告もあり、必要な測定事項に応じた被験者の選択が必要である。'

本研究での解析には、切歯点および左右下顎頭点の運動軌跡を用いた。顱関節節での病態は、下顎運動と密接な関連性があり、また下顎運動は、切歯部での動きである下顎頭の関節窩内における運動軌跡により、評価することができる。解析項目の切歯点および下顎頭点の大移動量は、咬頭内合位から最大開口位までの3次元の直線距離とした。築山らは本研究と同様の測定を行っているが、切歯点および下顎頭点の軌跡に関しては、矢状面投影による距離の算定である3次元的計測を行っている。本研究では、3次元的座標を用いた測定を行い、運動軌跡の解析を行った。3次元的測定により、下顎運動をより生体運動に近似したものとして捉え、正しく再現しているものと考えられる。速度曲線における最大速度については、開口相および閉口相分けて算定し、さらに最大速度に到達するまでの移動距離およびその距離の最大移動距離に対する比を求めた。これらの項目は、下顎運動における運動様相を把握する上で、重要な指標と考えられる。'

被験者の構成は、男女各7名計14名である。各解析項目に関して、男女間での測定値の違いについて検定を行ったが、有意差は認められなかった。築山らの研究
正常咬合者の開閉口運動における下顎切歯および下顎頭の運動解析

においては、男女各20名の被験者で測定を行っているが、
男女差についての言及はなく、合算したデータを用いて
いる。また上田ら10)のデータは成人男子を被験者にして
おり、女子に関する測定は行われていない。いわゆる開
口量に関しては、男女差があることは、過去の報告から
明らかである11)。本研究結果から、最大開閉口運動の測
定に関して、今後この種のデータを採択する場合、男女
の区別は必ずしも必要がないことが示唆された。さらに、
下顎頭の運動については、左右側の測定値の違いを検定
したが、同様に有意の差は認められなかった。このこと
は、開閉口運動が下顎の動きとしては比較的単純であり、
左右の下顎頭の運動性ならびに協調性を見るパラメータ
として有用であることを示している。もし左右どちらか、
あるいは両側の下顎頭運動が制限を受けている場合に
は、当然運動軌跡も測定値にも、なんらかの違いが生じ
ると考えられる。今回の研究においては、得られた測定
値は、男女および左右の値を集計して、統計的検討をお
こない。基準値を算出した。また、測定上の再現性に関
しては、最大移動量および最大速度発現時の移動量につ
いて有意差があったものの、他の項目に関しては再現性
は高く、被験者として有用であるといえよう。なお下
顎頭点の移動量が計測-2において切歯点移動量が大さ
いにかかわらず小さい値を示したのは、下顎頭点の設
定が触診による方法で行われているための誤差が関与し
ているものと考えられる。基準点の設定に関しての再現
性については、今後検討していかなければならない。

4. 解析結果について

1）最大移動量

切歯点の最大移動量は50.2±3.9 mmであった。過去の
研究における切歯点の最大移動量は、上田らの報告
(54.71±6.56 mm)10), 査山らの報告 (40.68±3.57 mm)11)
がある。上田らによる切歯点の最大移動量は、前方限界
運動に基づくものでやや大きな値として示されたものと
と思われる。また査山らの結果は、矢状面投影の2次元の
直線距離計測による値のために、やや小さなものとなっ
たと推察される。一方、正常者の最大開口運動の研究にお
いて、竹之下ら12)は開口度計を用い、男性：47.9 mm、
女性：44.0 mmと報告しており、瀬野ら13)はデジタルノ
ギスを用いた测定により、男女の平均値が48.1mmであ
ったと報告している。今回得られた切歯点の最大移動量
は、正常者においてはほぼ妥当であると言ってよい
だろう。

下顎頭点の最大移動量は、左右の平均値が15.5±4.1
mmであった。この値は査山らの報告10) 15.67±2.64 mm
と類似していたが、上田らの報告11)の19.23±2.62 mm
と比較してやや小さな値であった。本研究では、触診に
よる下顎頭点を採用しており、下顎頭基準点の違いが計
測値に影響しているものと思われる。

2）最大運動速度について

切歯点、下顎頭点ともに最大速度は開口相と閉口相と
では、明らかな違いが認められた。すなわち閉口相のほ
うが開口相よりも大きな値を示した。この傾向は、過去
の研究結果と共通している11)。開口運動は、開口終末を
最終的に決定する要素がないため、関節節結での感受
器の刺激が閉口筋による無意識的な運動抑制を引き起こ
し、閉口筋群と関節筋群との間の拮抗作用により速度抑
制が起っていることも考えられる。また、開口運動時に
関節節結を下顎頭が通過する際に、顎関節、筋経鍵での
感受器等による抑制が発現することは示唆されている11)、
檀沢ら10)は、開口運動時の位置感覚に対する筋振動刺激の効果について、咬筋筋経鍵由来の求心性情報により位置的抑制機構を、主として開口運動時よりも開口運動時に関与しているとしている。そこで、顎関節には筋経鍵が豊富に存在するが、顎関節においては、筋経鍵はどこかにあるか、ほとんど存在しないからであろうと述べている。さらにCapady14)は、開口運動に伴って伸張されつづける筋の求心性情報が運動制御に関与している。また、開口運動時には、被験者の意識が関与しやすい、一方開口は無意識的に運動と考えられるため、開口相よりも閉口相の方が安定しているという報告もある15)。

3）速度曲線パターン

切歯点、下顎頭点ともに速度曲線には、3種類のパターンのあることが判明した。

査山ら10)も、最大開閉口運動における下顎頭点の開口
相での速度曲線に、異なった種類のパターンが存在する
ことを示唆している。下顎の運動速度ピークが1つ以上
存在する理由については、明らかではないが、約60%の
被験者がにおいて開口相における速度ピークが2つ認め
られた。この開口相での2相性は、開口運動時の外側翼突
筋下顎の筋活動の影響や下顎頭が滑走する関節節結の解
剖学的な影響の影響、また下顎頭の回転運動の関与など
と示唆されている16,17)。全運動軸の運動経路は関節節
の解剖学的形状を表すと考えられ18,19)、速度ピークの
谷間と関節節結の位置との間に関係があると考えられ
ている。このことと、1相性よりも2相性の方が下顎頭点
運動軌道の弯曲が強いという結果を統合すると、関節節
節結の解剖学的形状が下顎頭開口相の速度パターンに何らかの
影響を与えていることが考えられる20)。下顎頭運動と顎
関節部の解剖学的構造についての検討が必要性を考えら

NII-Electronic Library Service
4）切歯点と下頬頭点の運動軌跡の関連性について

下頬運動の評価方法として、従来来主として切歯点の運動軌跡が用いられてきた。それは主に測定上の技術的問題に原因が帰せられるが、近年3次元自由度の測定装置の開発により切歯点のみならず下頬頭点の運動軌跡を把握することが可能となった。しかし両者の運動軌跡の相互関係を検討した研究は少ない。本研究結果から、切歯点と下頬頭点の運動軌跡の特性は必ずしも一致しないことが判明した。すなわち最大速度発現時運動量に関しても、開口相においては、切歯点と下頬頭点では、異なった値を示した。すなわち、切歯点では中心咬合位より32%の運動量において最大速度になるのに対し、下頬頭点では、50%の運動量の時点で最大速度となった。この両者の違いは、切歯での運動がほぼ螺旋運動であるのに対し、下頬運動の運動は開口相直後の回転運動とその後引き続き滑走運動との組み合わせによるものであるためと考えられる。さらに速度曲線パターンにおいても切歯点と下頬頭点では、パターンが異なっていることが多く、下頬頭の運動下頬頭部形態や開口および閉口筋群の作用など複雑に関与していることが示されている。データ数をさらに増やし、両者の相互関係がさらに明らかになれば、これらのパラメータにより、顎運動機能異常の診断の精度を高めることになるであろう。

V. 結 論

最大開閉口運動における切歯点ならびに下頬頭点の最大移動量と最大速度ならびに速度曲線は、顎運動機能の評価パラメーターとして有用であることが示唆された。

文 献

1）瀬野智、鶴田正彦、矢 明恒ほか：大学生における顎関節異常の発現についての調査、鶴見歯学、23：207-214、1997。

2）藤村哲也、坂東永一：ディジタル方式顎運動測定器の開発、補綴誌、35：830-842、1991。

3）上田龍太郎、坂東永一、中野雅徳ほか：顎口腔機能診断のための6自由度顎運動パラメータの検討、補綴誌、37：761-768、1993。

4）黒川昌彦、林 豊彦、宮川道夫ほか：1次元C C Dカメラを用いた顎運動測定装置（JKN-1）の測定精度、信学技報、MBE92-96、81-88、1992。

5）石岡 靖、林 豊彦：顎口腔機能のバイオメカニクス的診査、バイオメカニズム学会誌、18：43-49、1994。

6）常盤 譲、三浦不二夫、桑原洋助ほか：汎用型顎口腔機能総合解析システムの開発、顎機能誌、3：11-24、1996。

7）築山英光、古野 謙、築山能大ほか：側方運動における顎関節二次元運動に関する研究第1報側方運動解析のための新しい顎関節基準点について、補綴誌、37：159-171、1993。

8）築山能大、古野 謙、末次恒夫：開閉口運動の速度解析に関する研究第1報切歯、大臼歯、顎頭の開口運動速度の定量解析、補綴誌、38：126-131、1994。

9）鈴木 博、半田秀雄、三浦不二夫：顎関節雑音と顎口腔機能との関連性について、日頸誌、2：37-47、1990。

10）竹之下康治、河野勝幸、鳥越康彦：歯科検診時に実施した顎関節症症状および開口度の調査結果について、歯科展、62：941-950、1983。

12）倉沢敏文、鷹埼孝也、高利光治：開閉口運動時の位置感覚に対する筋振動刺激の効果、顎機能誌、1：87-93、1994。

13）Capady, C. and Cooke, J.D.：Vibration-induced changes in movement-related EMG activity in humans. Exp Brain Res, 52：139-146、1983。

14）築山能大、古野 謙、末次恒夫：開閉口運動時の運動速度パターンの解析、補綴誌、39：530-534、1995。

15）福島俊士：習慣的開閉運動における顎頭運動の研究、補綴誌、15：267-290、1971。

16）井上 宏：外側翼突筋の形態、機能と病態、歯頸展望別冊/顎関節症の臨床、25-32、1989。

17）日比野和人：外側翼突筋上頭の基本特性ならびに開口量-咬合力との関係、補綴誌、34：545-558、1990。

18）大石秀徳：下顎運動の立場からみた顎関節構造の研究、補綴誌、11：197-220、1967。