REGULATION OF PROSTATIC GLUTATHIONE-PEROXIDASE (GSH-PO) IN RATS TREATED WITH A COMBINATION OF TESTOSTERONE AND 17β-ESTRADIOL

Masanori MURAKOSHI, Rie IKADA and Masashi TAGAWA

Safety Research Department, Teikoku Hormone Mfg. Co., Ltd.,
1604 Shimosakunohe, Takatsu-ku, Kawasaki-city, Kanagawa 213-0033, Japan

(Received July 27, 1999; Accepted September 10, 1999)

ABSTRACT — In order to confirm the relationship between sex hormone administration and glutathione-peroxidase (GSH-PO) in the rat ventral prostate, the levels of GSH-PO mRNA, GSH-PO activity, and lipid peroxide (TBA) value in the ventral prostate were investigated. Male C57CD(SD)IGS rats were divided into six experimental groups. Group 1 consisted of intact controls. In group 2, rats were sacrificed two days after castration. In groups 3 and 4, rats were subcutaneously administered 1 mg/animal of testosterone daily for three or seven days after two days of castration, respectively. In groups 5 and 6, rats were subcutaneously administered 1 mg/animal of testosterone plus 0.01 mg/animal of 17β-estradiol (E2) daily for three or seven days after two days of castration, respectively. GSH-PO activity of the ventral prostate homogenate for testosterone or testosterone plus E2 administration to the castrated rat was increased and the TBA value was remarkably decreased. The prostatic GSH-PO mRNA level was diminished in the castrated rat ventral prostate, but was increased by testosterone or testosterone plus E2 administration. In particular, the GSH-PO mRNA level of testosterone plus E2-treated animals was higher than that of testosterone-treated animals. These findings strongly suggest that expression of GSH-PO in the rat ventral prostate is considered to be testosterone- or E2-dependent. Furthermore, it is suggested that the transcription of prostatic GSH-PO mRNA was regulated by testosterone or E2 and de novo synthesis of GSH-PO would thus be regulated at transcription level by testosterone or E2.

KEY WORDS: Glutathione-peroxidase (GSH-PO), Prostate, Lipid peroxidation, mRNA, Testosterone, 17β-estradiol

INTRODUCTION

In our previous report (Murakoshi et al., 1999), immunocytochemical localization of glutathione-peroxidase (GSH-PO), which effectively reduces lipid peroxides was demonstrated in the rat ventral prostate under castration and testosterone administration. As the result, the intensity of GSH-PO staining was decreased by castration and it was clearly recovered by testosterone administration to the castrated rats. Therefore, we postulated that GSH-PO in the glandular epithelial cells of the rat ventral prostate was testosterone-dependent (Murakoshi et al., 1999).

The development and differentiation as well as the maintenance of structure and secretory functions of the prostates are dependent on androgens, but other steroid hormones, such as estrogen, are also supposed to have an important role in prostate physiology (Price and William, 1961; Mawhinney et al., 1979; Cunha et al., 1987).

In the present study, in order to confirm the relationship between sex hormone administration and the biological significance of GSH-PO in the prostate, we used a biochemical approach (northern blotting, GSH-PO activity and lipid peroxide value) to study the ventral prostate of normal, castrated and testosterone or testosterone plus 17β-estradiol-administered rats.
M. MURAKOSHI et al.

MATERIALS AND METHODS

Animal and tissue preparation
Male Crl:CD (SD) IGS rats were purchased from Charles River Japan Inc. (Atsugi, Japan) at the age of seven weeks. The animals were kept in a barrier-sustained animal room, which was maintained at a temperature of 22 ± 2°C with a relative humidity of 55 ± 15%. The room was ventilated twenty-one times per hr and provided with 12 hr of light (from 8:00 to 20:00). Solid food (CE-2, CLEA Japan Inc.) and tap water were given ad libitum. The animals were kept for a one-week acclimation period under laboratory conditions.

Five animals served as controls (Group 1). In group 2, five rats were sacrificed two days after castration. In groups 3 and 4, five rats were subcutaneously administered 1 mg/animal of testosterone-propionate (testosterone, Sigma Chemical Co., St. Louis, MO) daily for 3 or 7 days after two days of castration, respectively. In groups 5 and 6, five rats were subcutaneously administered 1 mg/animal of testosterone plus 0.01 mg/animal of 17β-estradiol (E2; Teikoku Hormone, Mfg. Co. Ltd., Kawasaki) daily for 3 or 7 days after two days of castration, respectively. Testosterone and E2 were dissolved in dimethyl sulfoxide. Each rat was killed by decapitation and the ventral prostates were removed immediately.

Biochemical examination
1. Measurement of lipid peroxide levels
 One gram of fresh prostate was homogenized with a potter type homogenizer in 10 ml of 0.25M sucrose solution containing 1 mM MgCl₂ and 0.7 mM 2-mercaptoethanol. The homogenates were centrifuged at 700 g for 10 min and pellets were removed. Then the lipid peroxide level (TBA value) of the homogenate was determined by the thiobarbituric acid method according to the method of Yagi (1976) and expressed in terms of malondialdehyde (nmol/ml).

2. Measurement of GSH-PO activity
 One hundred microliters of homogenate obtained were pre-incubated with 2.5 ml of reaction medium containing 0.1M Tris/borate buffer, pH 8.5, 3 mM EDTA/Tris, 0.12 mM NADPH (Oriental Yeast Co., Tokyo), 0.25 mM reduced glutathione (Sigma Chemical Co., St. Louis, MO) and 2.5 μg of glutathione reductase (Sigma Chemical Co., St. Louis, MO) for 2 min at 37°C. The reaction was then started by the addition of 0.1 ml of cumen hydroperoxide (Mathen Coleman and Bell Manufacturing Chemist, USA). The decrease in the absorbance at 340 nm was measured after 5 min incubation using a Hitachi spectrophotometer model 210. One unit of enzyme oxidized 1 μmol NADPH to NADP/min at 37°C.

3. Northern blotting
 The GSH-PO mRNA was measured in extracts prepared by rapidly homogenizing tissues with guanidine isothiocyanate solution (Chirgwin et al., 1979). Total mRNA was prepared by a standard cesium chloride-ultracentrifugation method (Sambrook et al., 1989). Fifteen micrograms of total RNA were electropherased and nick-transferred onto nitrocellulose filters. Hybridization was performed, as reported previously, using a [32P]-labeled complementary deoxyribonucleic acid (cDNA) probe for GSH-PO (Condell and Tappel, 1982), while a cDNA probe for chicken β-actin (Chambers et al., 1986) was used as an internal positive control (house-keeping gene mRNA).

Statistical analysis
 The data were expressed as means ± SD. Homogeneity of variance was tested by Bartlett’s method, and when the assumption of homogeneity of variance was met, one-way layout analysis of variance was performed. When a significant difference was observed, Scheff’s or Dunnett’s multiple comparative test (Yoshimura, 1997) was performed between the castrated group and the other experimental groups.

RESULTS

Group 1 (Intact control)
 TBA value and GSH-PO activity in the ventral prostate homogenates are shown in Table 1. Lipid peroxide levels expressed as TBA values of the ventral prostate homogenates from control rats were 4.97 ± 1.12 nmol/ml. GSH-PO activity was 12.91 ± 0.25 unit/g ventral prostate. The prostatic GSH-PO mRNA levels are shown in Photo 1.

Group 2 (Castration)
 GSH-PO activity was decreased, but TBA value was similar to that of group 1. The prostatic GSH-PO mRNA level was much lower than that of group 1.

Group 3 (Castration plus testosterone 3 days)
 Both GSH-PO activity and TBA value were similar to those of group 1. The prostatic GSH-PO mRNA level was higher than that of group 1.
GSH-PO expression of rat prostate.

Photo 1. Northern blot analysis of prostatic total RNA. It is hybridized with cDNA for glutathione-peroxidase (GPX) mRNA, or that for chicken β-actin (Actin) mRNA. lane A: Intact control, lane B: Castration + Testosterone 3 days, lane C: Castration + Testosterone 7 days, lane D: Castration + Testosterone 3 days + E2 3 days, lane E: Castration + Testosterone 7 days + E2 7 days, lane F: Castration.

Table 1. Lipid peroxides (TBA) value and glutathione-peroxidase (GSH-PO) activity.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>TBA value (n mol/mL)</th>
<th>GSH-PO activity (unit/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intact</td>
<td>4.97±1.12</td>
<td>12.91±0.25</td>
</tr>
<tr>
<td>2</td>
<td>Castration</td>
<td>4.07±1.20</td>
<td>7.81±1.01</td>
</tr>
<tr>
<td>3</td>
<td>Castration + T 3 days</td>
<td>4.91±0.83</td>
<td>12.88±0.35*</td>
</tr>
<tr>
<td>4</td>
<td>Castration + T 7 days</td>
<td>2.73±0.60*</td>
<td>19.82±1.15**</td>
</tr>
<tr>
<td>5</td>
<td>Castration + T 3 days + E2 3 days</td>
<td>4.56±1.88</td>
<td>12.75±0.35*</td>
</tr>
<tr>
<td>6</td>
<td>Castration + T 7 days + E2 7 days</td>
<td>2.79±1.09*</td>
<td>20.05±0.98**</td>
</tr>
</tbody>
</table>

T: Testosterone, E2: 17β-estradiol
Values are the mean±S.D. (n=5).
Significantly different from castration (*: p<0.05, **: p<0.01).
M. MURAKOSHI et al.

Group 4 (Castration plus testosterone 7 days)

GSH-PO activity was higher than that of group 1. TBA value was much lower, being only about 50% of group 1. The prostatic GSH-PO mRNA level was comparable to that of group 3.

Group 5 (Castration plus testosterone 3 days and E2: 3 days)

Both GSH-PO activity and TBA value were similar to those of group 3. The prostatic GSH-PO mRNA was comparable to that of group 3.

Group 6 (Castration plus testosterone 7 days and E2: 7 days)

GSH-PO activity was higher than that of group 4. TBA value was similar to that of group 4. The prostatic GSH-PO mRNA level was higher than that of group 4.

DISCUSSION

In our previous study (Murakoshi et al., 1999), we demonstrated that the intensity of GSH-PO staining in the glandular epithelial cells of the rat ventral prostate was remarkably decreased after castration, and that it was clearly recovered by testosterone administration to the castrated rats. Therefore, it seemed that GSH-PO in the glandular epithelial cells of the rat ventral prostate could be considered testosterone-dependent, so we further speculated that GSH-PO staining pattern in the glandular epithelial cells of the ventral prostate was thought to be a useful marker for biological testosterone action (Murakoshi et al., 1999).

In the present study, we found that GSH-PO activity of the ventral prostate homogenate from testosterone or testosterone plus E2 administration to the castrated rat was increased and the TBA value remarkably decreased. In addition, the prostatic GSH-PO mRNA level was diminished in the castrated rat ventral prostate, but increased by testosterone or testosterone plus E2 administration. In particular, the GSH-PO mRNA level of testosterone plus E2-treated animals was higher than that of testosterone-treated animals.

It is well known that E2 alone will induce glandular atrophy of the prostate in normal and castrated animals (Bartsch et al., 1987; Attia and Zayed, 1989). The suppressive effects of E2 on the male genital organs have been attributed not only to gonadotropin suppression, but also to the direct effect of E2 on the gonads and their accessories (Attia and Zayed, 1989; Ciaccio et al., 1978). On the other hand, it is generally accepted that E2 exerts a synergistic effect with androgen in promoting prostatic growth in the castrated dog, a fact of considerable importance in understanding the pathogenesis of prostatic hyperplasia (Walsh and Wilson, 1976). Moore et al. (1978) demonstrated that treatment of castrated dogs with 17β-estradiol results in a twofold increase in the cytosolic androgen receptor content. Based on this observation they put forward the hypothesis that enhancement of the androgen receptor activity may be responsible for the synergism of estradiol and androgen in experimentally induced prostatic hyperplasia. Trachtenberg et al. (1980) developed this concept and gave new insight into the mechanism of steroid-induced prostatic hyperplasia by measuring the nuclear and cytosolic androgen and estrogen receptor contents; in castrated dogs administration of estradiol plus 3α-androstanediol synergistically increased the nuclear androgen receptor content to an extent that exceeded that found in castrated dogs treated with 3α-androstanediol only.

It was reported that the active center of GSH-PO consists of selenocystein (Flohe et al., 1973). In addition, the disappearance of GSH-PO in selenium-deficient rat liver was immunohistochemically and immunocytochemically proved by us (Watanabe, 1986) and others (Takahashi et al., 1986). We found that only a negligible amount of GSH-PO mRNA was exhibited in the case of selenium-deficient rat liver, while the mRNA coding for β-actin (Yoshimura et al., 1988) was outstandingly increased with selenium deficiency. Therefore, we postulated that the transcription of GSH-PO mRNA was regulated by selenium and the de novo synthesis of GSH-PO would thus be regulated at transcription level by selenium (Yoshimura et al., 1988). In the prostate, testosterone is irreversibly converted to dihydrotestosterone (DHT) by an enzyme, 5α-reductase. DHT, the major androgen of the prostate, has a higher affinity for androgen receptors than testosterone (Grino et al., 1990), and is required for the normal development and function of the gland. Based on our data and these facts, it is suggested that the transcription of prostatic GSH-PO mRNA was regulated by testosterone (DHT) or E2, and de novo synthesis of GSH-PO would thus be regulated at transcription level by testosterone (DHT) or E2.

GSH-PO is a selenium-dependent enzyme that exists as a homotetramer with each 22-kDa subunit containing a selenium atom incorporated within a catalytically active selenocysteine residue (Chambers et al., 1986). There are three other members of the selenium-dependent GSH-PO family, although cytosolic GSH-PO is the predominant form (Chu et al., 1993).
The gene encoding GSH-PO was mapped on chromosome 3q11-13 (Chada et al., 1990). Because GSH-PO decomposes hydrogen peroxide and organic hydroperoxides produced during normal metabolism and after oxidative insults, GSH-PO prevents peroxide-induced DNA damage, lipid peroxidation, and protein degradation (Watanabe, 1986; Fuchs et al., 1997). P53, after being activated by DNA-damaging reagents, has been shown either to induce G1 growth arrest or apoptosis (Levine, 1997). The p53 target genes that mediate or associate with p53-induced apoptosis include Bax (Knudson et al., 1995), Fas/APO 1 (Fuchs et al., 1997), as well as those involving generation of reactive oxygen species (Polyak et al., 1997). Recently, Tann et al. (1999) have identified and characterized GSH-PO, an antioxidant enzyme, as also induced by p53. It appears paradoxical that p53, on one hand, induces the gene responsible for reactive oxygen species generation, which mediates apoptosis (Polyak et al., 1997), and on the other hand, induces expression of a protective antioxidant enzyme, GSH-PO, which protects cells from oxidative damage and apoptosis (Liebmann et al., 1995; Kayanoki et al., 1996). It is known that p53-induced reactive oxygen species generation is a rather later event (Polyak et al., 1997). Thus, p53 may regulate cellular redox status in a time-dependent manner: it increases antioxidant synthesis at an early stage followed by an increase in reactive oxygen species generation.

It has been shown that rat prostatic glandular epithelium undergoes apoptosis within hr of castration and results in involution of the gland within 7 days (Kyprianou et al., 1988). In our previous report (Murakoshi et al., 1996), castration induced apoptosis in the prostatic glandular epithelial cells and apoptosis was reduced by testosterone administration to the castrated rats. Furthermore, we found that the intensity of the staining for bcl-2, a proto-oncogene that blocks apoptosis in multiple contexts, in the prostatic glandular epithelial cells was greatly decreased after castration, and that it was clearly recovered by testosterone administration to the castrated rats (Murakoshi et al., 1996).

The relationship between GSH-PO expression, apoptosis, and testosterone or testosterone plus estrogen stimulation of the ventral prostate requires further study.

REFERENCES

Chambers, I., Frampton, J. and Goldfarb, P.(1986): The structure of the mouse glutathione peroxidase gene. The selenocysteine in the active site is enhanced by the termination codon, TGA. EMBO. J., 5, 1220-1227.

Grino, P.B., Griffin, J.E. and Wilson, J.D.(1990): Testosterone at high concentrations interacts with the human androgen receptors similar to dihydrotestosterone. Endocrinology, 126, 1165-1172.

The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. J. Biochem., 119, 817-822.

