Thymoma and Multiple Thymic Cysts in a Dog with Acquired Myasthenia Gravis

Kazuyuki UCHIDA¹, Yuichi AWAMURA², Tomoko NAKAMURA¹, Ryoji YAMAGUCHI¹ and Susumu TATEYAMA¹

¹Department of Veterinary Pathology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2155 and ²Totsuka-Animal Hospital, Totsuka-cho, Totsuka-ku, Yokohama 244-0003, Japan

(Received 11 January 2001/Accepted 20 March 2002)

ABSTRACT. An anterior mediastinal cystic lesion in an 11-year-old mongrel dog was examined. The dog showed dysphagia and vomiting due to megaesophagus, and anterior mediastinal round mass lesion, approximately 35 mm in diameter, was found by X-ray. Based on clinical examinations, the dog was diagnosed as acquired myasthenia gravis and was successfully controlled by anticholinesterase treatment for approximately 4 months. The dog died of thamic stroke and was necropsied. Grossly, fatty tissues with cysts containing yellowish fluid and white nodules were found in the anterior mediastinal area. Histopathologically, multiple cysts, neoplastic tissues, and atrophic thymus were found within the examined tissues. The cysts were lined by thin wall consisting of ciliated cuboidal and non-ciliated round cells and were filled with eosinophilic colloidal fluid. Some extended cysts contained neoplastic foci within their lumen and walls. The neoplastic tissues consisted of mixed population of large epithelial cells with abundant clear cytoplasm and large oval nuclei, and lymphocytes. Immunohistochemically, proliferating epithelial cells were intensely positive for keratin and cytokeratin, and more than half number of infiltrating lymphocytes were intensely positive for CD3 suggesting T cells. All these findings indicate the neoplastic lesion is thymoma and multiple cysts are considered as thymic or brachial cleft cysts.

KEY WORDS: CANINE, THYMOMA, MULTIPLE CYSTS.

Thymomas are rather common tumors in the anterior mediastinal area of dogs [2, 3, 5, 7, 16], and some are associated with acquired myasthenia gravis and autoimmune paraneoplastic syndrome [6, 8, 10, 12, 17, 18, 22]. The clinical and pathological features of thymomas in domestic animals are well documented. Histopathologically, thymomas are characterized by mixed population of thymic epithelial cells and lymphocytes, and can be classified into epithelial dominant, lymphocyte dominant, and mixed type. On the other hand, several cystic changes including brachial cleft, thymic, bronchial, and esophageal cysts, may appear in the anterior mediastinal area and most of them are originated from the endoderm of the 3rd and 4th pharyngeal pouches. These cystic lesions are broadly classified according to their morphological features of the cyst walls and location. Interestingly, there are a few case reports of human thymomas arising in the wall of these thymic cysts [4, 13, 19], which are distinguished from cystic changes of thymomas.

The present paper describes the morphological features of multiple cysts containing neoplastic foci mimicking mixed type thymoma in the anterior mediastinal area of a dog suffering from acquired myasthenia gravis. The relationship between thymoma and multiple cysts is discussed.

An 11-year-old mongrel male dog started to show dysphagia, vomiting, and bad appetite on March 12, 2001, and was presented to a private animal hospital. Since the dog had typical clinical features of acquired myasthenia gravis, anticholinesterase drug, endrophonium chloride, was injected to confirm the diagnosis. By endrophonium chloride injection, apparent amelioration of dysphagia was observed. In addition, X-ray examination revealed the presence of mass lesion in the anterior mediastinal area and megaesophagus. Needle biopsy of the anterior mediastinal mass revealed a large number of neutrophils, macrophages, and a few mesothelial cells and mast cells, but no neoplastic cells were detected. Diagnosis of the anterior mediastinal mass was not made at this time. Based on these findings the dog was clinically designed as acquired myasthenia gravis associated with some thymic lesions. The dog was successfully controlled for 134 days by anti-cholinesterase drug, pyridostigmine bromide, and prednisolone. The dog suddenly died of thamic stroke on July 25, 2001. Immediate necropsy at the hospital revealed diffuse pulmonary hemorrhage and fatty tissues in the anterior mediastinal area measured by 9.0 × 2.0 × 0.8 cm. Whole the anterior mediastinal tissue was fixed by 10% formalin for further pathological examinations.

The fixed tissue contained multiple cysts ranging from 2 to 10 mm in diameter. Some cysts were filled by yellowish pink fluid and some contained yellowish white solid nodules (Fig. 1). Paraffin sections of 2 to 4 μm thick were made and stained with hematoxylin and cosin (HE) and periodic acid Schiff (PAS) for routine histopathological examination. Immunohistochemical analysis was performed using Envision polymer reagent (Dako-Japan, Kyoto, Japan). As primary antibodies, rabbit antisera against human CD3 (1:40, Dako-Japan), keratin (wide range, prediluted, Dako-Japan), and mouse monoclonal antibody against cytokeratin (prediluted, Nichirei, Tokyo, Japan) were used. By routine histological examination, multiple cysts (Fig. 2), neoplastic tissues within cyst, and atrophic thymus were observed in submitted anterior mediastinal tissue. The cysts were lined by thin wall consisting of single to double layer of ciliated cuboidal and non-ciliated round epithelial cells (Fig. 3) and
the lumen was filled with eosinophilic colloidal fluid. Immunohistochemically, the ciliated epithelial cells were negative for keratin and cytokeratin, although non-ciliated epithelial cells were intensely positive for both antigens. Some largely extended cysts contained neoplastic tissue within the lumen and their cyst walls (Fig. 4). The neoplastic tissues consisted of mixed proliferation of large epithelial cells with abundant clear cytoplasm and large oval nuclei and lymphocytes (Fig. 5). The large epithelial cells sometimes formed glandular structures (Fig. 6) and sometimes showed single cell keratinization representing as eosinophilic spheroids (Fig. 7). By immunohistochemistry, proliferating epithelial cells were intensely positive for keratin and cytokeratin. In addition, infiltration of lymphocytes was abundant within the neoplastic foci, and more than half number of infiltrating lymphocytes was intensely positive for CD3 suggesting T cells (Fig. 8). Within the lumen of large cysts or around the neoplastic foci, there were abundant granulomatous areas consisting of accumulation of macrophages with yellowish brown pigments and cholesterol deposits.

The clinical features including megaesophagus and myasthenia gravis, were quite typical for the patients with thymoma [6, 9, 10, 12, 14, 17, 18, 22]. The present dog was clinically diagnosed as acquired myasthenia gravis before pathological examinations and was successfully controlled by anti-cholinesterase treatment. This fact indirectly suggests the present dog might be involved in autoimmune condition mediated by autoantibodies such as for acetycholine, titin, or ryanodine receptors associated to thymic lesions [9, 18]. Since serological analysis to detect autoantibody was not performed in this dog, the real pathogenesis of myasthenia gravis remained unknown. However, these clinical signs were very informative for pathological diagnosis of thymomas or related thymic changes including thymic cysts.

The neoplastic lesions are considered as mixed type thymoma consisting of solid proliferation of thymic epithelial cells and lymphocytes. Glandular differentiation of large clear epithelial cells is unique morphological character of the present case, although similar changes have been also reported previously in canine thymomas [1, 15, 21]. Occasional keratinization of the epithelial cells might imitate Hassall’s bodies that are specific feature of thymus and its tumors. Moreover, most of the infiltrating lymphocytes showed intense reactivity for CD3, suggesting T cells. Thus, all these morphological features are consistent with those of canine thymomas [2, 3, 5, 7, 16]. Interestingly all neoplastic foci were formed within the lumen and wall of largely extended cysts. Cystic changes of thymomas were sometimes recognized in animals and humans and some were reported as cystic thymomas [8, 11]. Recently, Sugio et al. [19] reported a case of thymoma arising in the wall of the thymic cyst in a 77-year-old woman. In addition, several malignant thymic lesions arising from the thymic cysts have been reported in humans [4, 13]. In the present dog, there were multiple cysts varied in size in the anterior mediastinal area, together with atrophic thymus and some large cysts contained neoplastic lesions. It would be very difficult to decide whether present thymoma was arisen from the thymus with non-neoplastic cyst formation, or originated from the cyst walls. Since almost all neoplastic foci were recognized within the lumen and wall of large cysts, the present thymoma would be considered to arise in congenitally formed thymic cysts that related to brachial cleft tissues. The epithelial cells of these cysts may differentiate to thymic epithelial cells when they start to proliferate forming thymic tumors. In addition, some neoplastic epithelial cells may retain enough functional ability to mediate T cell differentiation of lymphocytes, because most infiltrating lymphocytes in the neoplastic foci were immunopositive for CD3. On the other hand, human acquired thymic cysts are described as multiocular and consisted of various thickened walls with severe inflammation [20]. Present thymic cysts represented as multiple, although inflammatory reactions were limited within the neoplastic foci. In addition, the cysts without neoplastic lesions were lined by thin wall consisting of single to double layer of ciliated and non-ciliated epithelial cells. Thus, except for the multiple formations, the present cysts contradict to multicocular thymic cysts in humans.

In conclusion, the present paper describes a unique morphology of canine thymoma probably arising from multiple thymic or brachial cleft cysts. The present case indicates that careful consideration should be needed for the diagnosis of such cystic changes in the mediastinal area, especially in dogs with acquired myasthenia gravis or other clinical signs associated to thymomas.

Fig. 1. The cut surface of large cysts (arrow heads), approximately 10 mm in diameter, are filled by yellowish fluid and contain white solid neoplastic tissues (arrows).

Fig. 2. Multiple cysts varied in size are filled by eosinophilic homogeneous fluid. HE. Bar = 1 mm.

Fig. 3. Ciliated cuboidal and non-ciliated round epithelial cells lining the cyst. HE. Bar=20 μm

Fig. 4. Two large cysts containing neoplastic foci. HE. Bar=1 mm.

Fig. 5. Mixed population of large epithelial cells and lymphocytes within the neoplastic foci. HE. Bar=200 μm.

Fig. 6. Glandular formation of proliferating large clear epithelial cells. HE. Bar = 20 μm.

Fig. 7. Keratinization of proliferating large clear epithelial cell imitating Hassall’s body. HE. Bar=20 μm.

Fig. 8. Infiltration of CD-3 positive lymphocytes within the neoplastic tissue consisting of large epithelial cells. CD-3-immunostaining. Bar=20 μm.
THYMOMA AND MULTIPLE THYMIC CYSTS OF A DOG
REFERENCES

p53ヘテロ欠損[p53 (+/-)]および野生型[p53 (+/+) ]CBAマウスの肝発癌感受性を検討することを目的として、71匹のp53(+/-)および74匹のp53(+/+)CBAマウス（雄、6-12週齢）を用い、実験1ではfluamequin(FL)を4,000ないし0 ppm混餌投与、あるいは実験開始時 dialdimethylstibosamine(DMN)を5 mg/kg腹腔内単回投与、実験2ではdi(2-ethylhexyl)-phthalate (DEHP)を6,000ないし0 ppm混餌投与、実験3ではphospholthalein(PH)を12,000、6,000ないし0 ppm混餌投与した。26週の関与後、すべての生存動物を処理した。FL群の肝細胞再発症の発生頻度はp53(+/-)マウスにおいて、その発生個数はp53(+/-)、p53(+/+)マウスにおいて対照群に比し有意に増加した。DMN群の肝細胞再発症の発生頻度および発生個数は、対照群に比し軽度増加した。また、FL、DMN群ともに肝細胞再発症の発生頻度、発生個数およびFCNA陽性細胞数比はp53(+/-)およびp53(+/+)マウスとの間で有意差は認められなかった。DEHP、PH群ともに肝細胞再発症の発生頻度および発生個数は対照群に比し有意差は認められなかった。以上の結果より、CBAマウスにおけるp53遺伝子の片側欠損は化学物質による肝発癌誘導を増強しないことが示唆された。

21カ月齢サラプレッド種馬にみられた腸管スピロヘータ症（短報）——芝原友幸1）・桑野敬雄2）・上野秀幸2）・佐藤秀昭4）・前田京治1）・石川義春1）・門田孝一1）（1）独立行政法人農業技術研究機構動物衛生研究所北海道支所、2）日本中央競馬会古馬総合研究所、3）同・根木支所、4）同・日高育成牧場、5）北海道教育大学畜産健康衛生学）…………633-636

7カ月間、持続的な下痢と発育遅延がみられた21カ月齢サラプレッド種仔馬が病状を伴い供された、剖検時、盲腸と結腸粘膜は浸潤状に充実していた。病理組織学的に粘膜と粘膜下組織は水腫状で、多数のリンパ球や大上皮細胞の浸潤がみられた。同時に、Brachyspira抗原を多形的に3種のスピロヘータが盲腸と結腸病変部上皮の粘液層と粘膜に示例数が認められた。これらは、しばしば変性上皮細胞の細胞質内および細胞間と粘膜固有層、特に血管収縮に認められた、これら登入性腸管スピロヘータは馬に大腸炎ならびに下痢を起こす病原体のひとつである可能性が示唆された。

後天性重症筋無力症罹患犬にみられた胸腺腫および多発性胸腺囊胞（短報）——内田和幸1）・栗村雄一2）・中村智子1）・山口良二1）・立山晋1）（1）宮崎大学農学部家畜病理学教室、2）戸塚動物病院）…………637-640

11歳雄種犬の前縦隔部に認められた囊胞性病変を検索した。本症例は虚脱と巨大食道症に起因する嘔吐を示し、X線像に前縦隔部に直径約35 mmの球形陰影が確認された。臨床診断により本症例は後天性重症筋無力症と診断され、抗コンレンステラーゼ薬治療で約4ヶ月間良好に維持された。本例は慢性ショックにより死亡し剖検された。肉眼的に前縦隔部には、黄色白色体を貯留する囊胞と白色結節を含む脂肪組織が認められた。組織学的に、同組織に、多発性囊胞、腫瘍組織、および壊死した胸腺が含まれていた。発症は長い形状の線毛上皮と円形非線毛上皮からなる腫瘍性歯骨から構成され、内部に好酸性コロイドを有していた。一部の拡張した囊胞内および囊胞壁には腫瘍組織がみとめられ、この腫瘍組織は、淡紅色の細胞質および円形核を持る大型上皮細胞とリンパ球から構成されていた。病理組織学的に両皮細胞が部分的に腫瘍性で、浸潤性が認められたリンパ球の半数以上がCD3陽性でありT細胞と考えられた。以上の検索結果より腫瘍性病変は胸腺腫、多発性囊胞は胸腺囊胞あるいは遺伝性竜弓性囊胞と考えられた。

副甲状腺ホルモンによる若齢ラットの骨間質細胞からのインターロイキン6遺伝子発現の誘導（短報）——千葉隆1）・海野正子3）・Neer, R. M.1）・岡田幸弘2）・Segre, G. V.・Lee, K.2）（1）ハーバード大学マサチューセッツ総合病院内分泌科、2）岩手大学農学部家畜病理学教室、3）中央製薬（株）富士御殿場研究所）…………641-644

副甲状腺ホルモン（PTH）が骨間所においてインターロイキン6（IL-6）の発現を制御するかを検証するため、4週齢のラットにPTH 1-84 225 μg/kgを単回皮下投与し、in situ