Comparative Effects of Risedronate and Calcitriol on Cancellous Bone in Rats with Glucocorticoid-Induced Osteopenia

Jun IWAMOTO1, Azusa SEKI2, Tsuyoshi TAKEDA1, Yoshihiro SATO3, Harumoto YAMADA4, Chwan-Li SHEN5 and James K. YEH6

1Department of Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160–8582, Japan
2Hamri Co., Ltd., Tokyo 110–0005, Japan
3Department of Orthopaedic Surgery, Fujita Health University, Aichi 470–1192, Japan
4Department of Pathology, Texas Tech University Health Sciences Center, TX 79930, USA
5Metabolism Laboratory, Department of Medicine, Winthrop-University Hospital, NY 11501, USA

(Received August 15, 2005)

Summary Objectives: To compared the effects of risedronate (Ris) and calcitriol (Cal) on cancellous bone in rats with glucocorticoid (GC)-induced osteopenia. Materials and Methods: Thirty female Sprague-Dawley rats, 4 mo. of age, were randomly divided by the stratified weight method into three groups of 10 rats each according to the following treatment schedule: 8-wk GC administration with 4-wk vehicle (control), Ris, and Cal as therapeutic treatment initiated after 4-wk GC administration. The GC (methylprednisolone sodium succinate, 5.0 mg/kg, s.c.), Ris (10 μg/kg, s.c.), and Cal (0.1 μg/kg, p.o.) were administered 3 times a week. At the end of the 8-wk treatment period, two-dimensional (2D) bone histomorphometric analysis was performed for cancellous bone of the proximal tibial metaphysis, 3D micro-computed tomographic analysis was performed for the distal femoral metaphysis, and the mechanical strength of the distal femoral metaphysis was evaluated by a compression test. Results: Ris and Cal treatment increased both 2D and 3D cancellous bone mass. However, Ris treatment exhibited more pronounced effects on 2D and 3D cancellous bone mass than Cal treatment, and the effects of both Ris and Cal treatment were greater on 3D cancellous bone mass than on 2D cancellous bone mass. The response of 2D and 3D cancellous bone mass to Ris treatment was characterized by its effect on trabecular number and thickness, which was associated with markedly suppressed bone resorption and bone formation in terms of suppressed bone turnover. On the other hand, the response of 2D cancellous bone mass to Cal treatment was attributed to the effect of Cal on 2D trabecular thickness, and the response of 3D cancellous bone mass to Cal treatment might be characterized by the effect of Cal on 3D trabecular number and thickness, with a more marked effect of trabecular thickness. These effects were primarily due to mildly suppressed bone resorption and maintained or even increased bone formation. Despite the differential effect of Ris and Cal treatment on the cancellous bone structure and bone metabolism, both treatment increased the maximum load and braking energy of the distal femoral metaphysis to a similar extent, suggesting different mechanisms for improving bone strength. Conclusions: This study showed the differential effects of Ris and Cal on cancellous bone in rats with GC-induced osteopenia.

Key Words glucocorticoid, cancellous osteopenia, risedronate, calcitriol, rat

Glucocorticoid (GC)-induced osteoporosis is more evident in cancellous bone than in cortical bone, and it has been demonstrated to be associated with an increased risk of vertebral fractures (1). Despite having a higher bone mineral density (BMD), patients with GC-induced osteoporosis suffer from vertebral fractures more frequently than those with postmenopausal osteoporosis, suggesting that GCs may cause deterioration in bone quality in terms of bone structure (2).

Randomized controlled trials have demonstrated the efficacy of alendronate and risedronate (Ris) in reducing the incidence of vertebral fractures in patients treated with GCs (3–5). On the other hand, a pooled data analysis also revealed the efficacy of active vitamin D in reducing the incidence of vertebral fractures in patients with GC-induced osteoporosis (6). A meta-analysis revealed that bisphosphonates were the most efficacious agents for improving lumbar BMD (7). However, the efficacy of this combination therapy in reducing the incidence of vertebral fractures in patients treated with GCs remains to be established.

Recently, Ito et al. (8) demonstrated the effects of Ris
on the three-dimensional (3D) structure and mechanical properties of cancellous bone in ovariectomized rats. Erben et al. (9) also showed the effects of Ris and calcitriol (CaI) on the 2D cancellous BV/TV and mechanical properties of the vertebrae in ovariectomized rats. However, very few studies have investigated the effect of Ris and CaI on the structure and mechanical properties of cancellous bone in rats treated with GCs. The purpose of the present study was to use an animal model to compare the effects of therapeutic Ris and CaI treatment on the structure and mechanical properties of cancellous bone in rats treated with GCs.

MATERIALS AND METHODS

Treatment of animals. Thirty female Sprague-Dawley rats, 4 mo of age, were purchased from Hilltop Lab. Animals, Inc. (Scottsdale, PA, USA). The animals were housed under local vivarium conditions (temperature 23.8°C and 12 h on/off light cycle), and were fed a pelleted standard chow diet containing 1.36% calcium and 2,400 IU/kg vitamin D (Rodent Diet 8604, Harlan Teklad, Madison, WI, USA), with free access to water. After allowing one-week’s adaptation to the new environment, the rats were randomized by the stratified weight method into three groups of 10 rats each according to the following treatment schedule: 8-wk GC administration with 4-wk vehicle, Ris, and CaI as therapeutic treatment initiated after 4-wk GC administration. Methylprednisolone sodium succinate (Pharmacia & Upjohn Company, Kalamazoo, MI, USA) was administered as the GC, at a dose of 5.0 mg/kg body weight three times a weekly (on Monday, Wednesday, and Friday) by subcutaneous injection. Ris (Aventis Pharma, Tokyo, Japan) was dissolved in 0.1 mL of sterile saline, and then administered by subcutaneous injection at a dose of 10 μg/kg body weight three times a week (on Monday, Wednesday, and Friday). Cal (Chugai, Tokyo, Japan) was dissolved in 0.1 mL of PBS containing 0.25% ethanol and 0.1% Tween 20, and then administered by gavage deep into the mouth at a dose of 0.1 μg/kg body weight three times a week (on Monday, Wednesday, and Friday). The Ris and Cal doses were effective dose in accordance with the previously published data (10–12). We have already confirmed that 4-wk GC administration (methylprednisolone sodium succinate, 5.0 mg/kg body weight three times a week by subcutaneous injection) induces cancellous osteopenia in 4-mo-old female Sprague-Dawley rats (13). The body weight of the rats was monitored weekly and the experimental period was 8 wk. The study was carried out at Winthrop-University Hospital, and the animals were maintained according to the National Institutes of Health (NIH) Guidelines for Care and Use of Laboratory Animals. All the animal protocols were approved by the Laboratory Animal Care Committee of Winthrop-University Hospital.

Preparation of specimens. All the rats were labeled with 10 mg/kg of calcine (Sigma Chemical, St. Louis, MO, USA) injected intramuscularly 10 d and 3 d before they were sacrificed. The animals were anesthetized with ketamine injected intraperitoneally at 80 mg/kg, together with xylazine at 12 mg/kg, and sacrificed by exsanguination. A serum specimen, the right and left femurs, and the right tibia were collected from every animal.

The serum samples were stored at −20°C, and then used for the measurements of serum calcium and phosphorus levels with an automated instrument (Dada Behring Model RXL, Bakersfield, CA, USA). The femurs were stored at −20°C, and then used for BMD measurements and biomechanical testing, as described below. The tibial length was measured with dial calipers and the bones were then used for bone histomorphometric analysis; they were fixed overnight in 40% cold ethanol, and then cut into three parts using an Isomet saw (Buehler, Lake Bluff, IL, USA). The proximal tibial metaphyses were stained with Villanueva Osteochrome Bone Stain (Polyscience, Warrington, PA, USA) for 5 d. The specimens were then dehydrated sequentially in ascending concentrations of ethanol (70%, 95%, and 100%) and xylene and then embedded in methyl methacrylate (EM Science, Gibbstown, NJ, USA) at 4°C, in accordance with the method of Erben (14). Frontal sections of the proximal tibial metaphysis were cut at 5-μm thickness using a microtome (Leica RM2155; Leica Inc., Nussloch, Germany), transferred onto chromium-gelatin-coated slides, dried overnight under pressure at 42°C, and coverslipped with Eukitt mounting medium (Calibrated Instruments, Hawthorne, NY, USA) for static and dynamic histomorphometric analyses.

Femoral BMD. The BMD of the whole left femur was determined by dual energy X-ray absorptiometry (DXA) using a Hologic QDR-2000 plus (Hologic Inc., Bedford, MA, USA). The instrument was adapted for an ultra-resolution mode, with line spacing of 0.0254 cm, resolution of 0.0127 cm, and collimation of 0.9 cm diameter. The bone was placed in a Petri dish, and to simulate soft-tissue density, tap water was poured around the bone to a depth of 1 cm. The bone mineral content and bone area were measured, and the BMD of that area was calculated by dividing bone mineral content by bone area. The coefficient of variation of these measurements at our laboratory was less than 1.0% (15).

Biomechanical testing. The distal femoral metaphysis of the right femur was isolated for a length of 10 mm from the joint surface of the femoral condyle. The mechanical properties of this segment were then measured by compression test. A compressive load was applied by the rectangular parallelepiped crosshead (length 2 cm, width 2 cm, and height 1 cm) to specimens from the lateral to the medial aspect. Specimens were tested in a saline bath at 37°C. Each specimen was submerged in the saline bath for about 3 min before the testing, to allow temperature equilibration. Load-displacement curves were recorded at a crosshead speed of 10 mm/minute and compression depth of 2.5 mm, using a materials-testing machine (M2500D: Maruto Co., Ltd., Tokyo, Japan). The parameters analyzed were maximum load, stiffness, and breaking energy.

Bone histomorphometric analysis of the tibia. A digi-
tizing morphometric system was used to measure bone histomorphometric parameters. The system consisted of an epifluorescence microscope (Nikon E-400, Osteo-Metrics, Atlanta, GA, USA), an osteomter measurement system (OsteoMetrics) coupled to an IBM computer, and a morphometry program (Osteo-Metrics). The measured parameters for cancellous bone included total tissue volume (TV), bone volume (BV), bone surface (BS), bone surface (BS), single- and double-labeled surfaces (SLS and DLS, respectively), and interlabel width. These data were used to calculate percent cancellous bone volume (BV/TV), trabecular number (Tb N), trabecular thickness (Tb Th), trabecular separation (Ts Sp), ES/BS, mineralizing surface (MS/BS [SLS/2+DLS/BS]), mineral apposition rate (MAR), bone formation rate (BFR/BS), and BFR/TV, in accordance with the standard nomenclature proposed by Parfitt et al. (16). In the present study, the region of cancellous bone measured was 1–4 mm distal to the lower margin of the growth plate in the proximal tibial metaphysis, which consists of secondary spongiosa. In addition to measurement of the above parameters, interlabel width beneath the growth plate was used to calculate longitudinal bone growth rate (LGR).

Micro-computed tomographic analysis of the distal femoral metaphysis. The micro-computed tomography apparatus (μCT-20) and the analysis software used in this study were provided by Scanco Medical (Basserdorf, Switzerland). This system consists of an X-ray source directed towards a cylindrical specimen holder. After traversing the sample, the X-rays are detected by a 1024-element CCD array. The process is piloted by a DEC a-station (Digital Equipment, Marseille, France) operating in an open VMS environment in a cluster configuration to perform the 2D and 3D analyses. The analysis system provides for direct calculation of the 3D histomorphometric parameters including BV/TV, Tb Th, Tb N, and Tb Sp.

With respect to image acquisition, the samples of the left distal femoral metaphysis obtained just after BMD measurements by DXA were placed vertically in a sample holder, with the epiphysical head facing downward. The parameters selected for this study consisted of a source energy kVp of 70, and mA of 113 to obtain the best contrast between bone and soft tissues. The sample holder was 20.5 mm in diameter. The sample area selected for scanning was a 0.4-mm portion of the metaphyseal secondary spongiosa, originating 6 mm from the distal point of the femur, and extending caudally. The scanning yielded an image dataset of 2D axial slices with an individual slice thickness/image resolution of 20 μm. A total of 20 slices was obtained.

Statistical analysis. All the data were expressed as means and standard deviation (SD). Multiple comparisons of data among the groups were performed by analysis of variance (ANOVA) with Fisher's protected least significant difference (PLSD) test. All statistical analyses were performed using the Stat View J-5.0 program on a Macintosh computer. A significance level of p<0.05 was used for all the comparisons.

RESULTS

Body weight, tibial length, femoral BMD, and serum calcium and phosphorus levels (Table 1)

The initial body weight did not differ significantly among the groups.

Ris treatment increased tibial length and femoral BMD, and decreased serum calcium levels. On the other hand, Cal treatment showed no effect on any measured parameters.

2D bone histomorphometric analysis of cancellous bone of the proximal tibial metaphysis (Figs. 1 and 2)

Ris treatment increased cancellous BV/TV, Tb N, and Tb Th, and decreased Tb Sp, as a result of decreased bone formation (MS/BS, MAR, BFR/BS, and BFR/TV) and markedly decreased bone resorption (ES/BS), while Cal treatment increased cancellous BV/TV and Tb Th as a result of mildly decreased bone resorption (ES/BS) and maintained or even increased bone formation (maintained MAR and BFR/BS or increased MS/BS). The effect of Ris on cancellous BV/TV and Tb Th as well as bone resorption (ES/BS) was greater than that of Cal. In particular, the increase rate of cancellous BV/TV by Ris and Cal treatment was 50.9% and 18.9%, respectively. Ris treatment increased LGR, whereas Cal treatment had no effect on this parameter.

3D micro-CT analysis of cancellous bone of the distal femoral metaphysis (Fig. 3)

Ris treatment markedly increased cancellous BV/TV, Tb N and Tb Th, and markedly decreased Tb Sp, while

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>240±10</th>
<th>274±13</th>
<th>39.6±0.4</th>
<th>218±4</th>
<th>9.3±0.2</th>
<th>7.5±0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ris</td>
<td>240±8</td>
<td>282±16</td>
<td>39.2±0.6*</td>
<td>232±7*</td>
<td>9.1±0.2*</td>
<td>6.6±0.7*</td>
</tr>
<tr>
<td>Cal</td>
<td>236±6</td>
<td>273±17</td>
<td>39.0±0.6</td>
<td>220±10</td>
<td>9.3±0.1</td>
<td>7.5±0.6*</td>
</tr>
</tbody>
</table>

Data are expressed as mean±SD. ANOVA with Fisher's PLSD test was used to compare the data among the groups. a, significant vs Vehicle; b, significant vs Ris. BMD: bone mineral density.

Table 1. Body weight, tibial length, femoral BMD, and serum calcium and phosphorus levels.
Cal treatment mildly increased cancellous BV/TV, Tb N and Tb Th, and mildly decreased Tb Sp. The effect of Ris on cancellous BV/TV, Tb N, Tb Th, and Tb Sp was greater than that of Cal. The increase rate of cancellous BV/TV by Ris and Cal treatment was 88.7% and 35.0%, respectively.

Biomechanical analysis of the distal femoral metaphysis (Fig. 4)

Ris and Cal treatment increased the maximum load and breaking energy of the distal femoral metaphysis to a similar extent. The stiffness of the distal femoral metaphysis was smaller in the Cal group than in the Ris group, although neither Ris nor Cal affected this parameter compared with the Veh group.

DISCUSSION

GCs clearly induce osteoporotic changes in cancellous bone. GC administration has been shown to induce a loss in 2D cancellous BV/TV, Tb N, and Tb Th, coupled with deterioration of the mechanical properties of the lumbar spine in rats (17–22); it has also been shown to induce a loss in 3D cancellous BV/TV and Tb Th, with an increase in trabecular bone pattern factor and deterioration of the mechanical properties of the lumbar spine in minipigs (23). However, long-term administration of GCs may be needed before 2D and 3D cancellous

Fig. 1. Bone histomorphometric analysis of cancellous bone of the proximal tibial metaphysis—Structural variables—. Data are expressed as mean±SD. ANOVA with Fisher's PLSD test was used to compare the data among the groups. Veh: vehicle; Ris: risendronate; Cal: calcitriol. a, significant vs Veh; b, significant vs Ris. BV/TV: bone volume/total tissue volume. Tb N: trabecular number. Tb Th: trabecular thickness. Tb Sp: trabecular separation.

Fig. 2. Two-dimensional bone histomorphometric analysis of cancellous bone of the proximal tibial metaphysis—Formative and resorptive variables—. Data are expressed as mean±SD. ANOVA with Fisher’s PLSD test was used to compare the data among the groups. Veh: vehicle; Ris: risendronate; Cal: calcitriol. a, significant vs Veh; b, significant vs Ris.
bone structures are modified in animals (24). GC-induced osteopenia has been associated with decreased bone formation and possibly increased bone resorption (25). The key histological feature of corticosteroid-induced cancellous bone loss has been reported to be a reduction in Tb.Th, reflecting suppressed bone formation (25).

We have confirmed that the 4-wk GC administration to 4-mo-old female Sprague-Dawley rats decreases 2D cancellous BV/TV, Tb.Th, and Tb.N, LGR, and tibial length, and increases Tb.Sp in the proximal tibial metaphysis, as a result of increased bone resorption and decreased bone formation (13). These results suggest that the 4-wk GC administration induces cancellous osteopenia in rats, which is associated with not only the decreased Tb.Th but also the increased Tb.Sp.

The efficacy of RIs and active vitamin D3 on 2D and 3D cancellous structure in ovariectomized rats has been well documented; RIs treatment has been shown to prevent 2D cancellous bone loss (9, 26) and increase 3D cancellous bone mass by maintaining the structure as well as the connectivity of the trabeculae (8). Alfacalcidol treatment increased not only 2D cancellous BV/TV and Tb.Th, but also 3D cancellous BV/TV by reinforcing the interconnectivities and structures of the trabeculae (27, 28). Cal treatment with calcium supplementation increased both vertebral and tibial 2D cancellous BV/TV and Tb.Th in ovariectomized osteopenic rats (9). Thus, in ovariectomized rats, the effect of RIs on 2D and 3D cancellous BV/TV seems to be related to its effect on Tb N, while the effect of Cal on 2D and 3D cancellous BV/TV seems to be attributable to its effect on Tb.Th and that on Tb.N and Tb.Th, respectively.

In our study, RIs and Cal treatment increased both 2D and 3D cancellous BV/TV without disturbing longitudinal bone growth. The increase rate of 2D cancellous BV/TV by RIs and Cal treatments was 50.9% and 18.9%, respectively, while the increase rate of 3D can-

Fig. 3. Three-dimensional μCT analysis of cancellous bone of the distal femoral metaphysis—Structural variables. Data are expressed as mean ± SD. ANOVA with Fisher's PLSD test was used to compare the data among the groups. Veh: vehicle, Ris: risedronate, Cal: calcitriol. a, significant vs Veh; b, significant vs Ris. BV/TV: bone volume/total tissue volume. Tb N: trabecular number, Tb.Th: trabecular thickness, Tb.Sp: trabecular separation.

Fig. 4. Biomechanical analysis of the distal femoral metaphysis. Data are expressed as mean ± SD. ANOVA with Fisher's PLSD test was used to compare the data among the groups. Veh: vehicle, Ris: risedronate, Cal: calcitriol. a, significant vs Veh; b, significant vs Ris.
cellous BV/TV by Ris and Cal treatments was 88.7% and 35.0%, respectively. Thus, Ris treatment exhibited more pronounced effects on 2D and 3D cancellous BV/TV than Cal treatment in our dose setting, and the effects of both Ris and Cal treatment were greater on 3D cancellous BV/TV than on 2D cancellous BV/TV.

The response of 2D and 3D cancellous BV/TV to Ris treatment was characterized by its effect on Tb N and Tb Th, which was associated with markedly suppressed bone resorption and bone formation in terms of suppressed bone turnover. On the other hand, the response of 2D cancellous BV/TV to Cal treatment was attributed to the effect of Cal on 2D Tb Th, and the response of 3D cancellous BV/TV to Cal treatment might be characterized by the effect of Cal on 3D Tb N and Tb Th, with a more marked effect on Tb Th. These effects were primarily due to mildly suppressed bone resorption and maintained or even increased bone formation. Thus, the primary effect of Ris on cancellous bone structure might differ between ovariectomized and GC-treated rats. The increase in Tb Th appears to be a key effect of Ris and Cal in GC-treated rats. Chavassieux et al. (29) also demonstrated that alendronate tended to increase 2D Tb Th rather than Tb N in patients with GC-induced osteoporosis.

We have confirmed that the 4-wk GC administration to 4-mo-old female Sprague-Dawley rats did not affect the maximum load, stiffness, or breaking energy of the distal femoral metaphysis, probably because of the short duration of observation (13). Although Ris had greater effects on 2D and 3D cancellous bone structure than Cal in our dose setting, Ris and Cal treatment increased the maximum load and breaking energy to a similar extent. Neither Ris nor Cal affected the stiffness of the distal femoral metaphysis. Properties related to bone strength include the rate of bone turnover, bone mass (BMD), geometry, microarchitecture, and mean degree of mineralization (30). Thus, the mechanism for the increase in bone strength by Ris and Cal treatment appeared to differ. The stiffness of the distal femoral metaphysis was smaller in the Cal group than in the Ris group, although there seemed to be a discrepancy between this parameter and bone formation parameters. Thus, it is possible that Cal treatment might make the cancellous bone more pliable than Ris treatment, partially contributing the similar effect of Ris and Cal on the other parameters in regard to bone strength. Further studies are needed to clarify the factors that affected biomechanical parameters of the distal femoral metaphysis.

In conclusion, the present study showed that the effect of both Ris and Cal treatment was more pronounced on 3D cancellous BV/TV than on 2D cancellous BV/TV. Although Ris had greater effects on the structure of cancellous bone than Cal in our dose setting, Ris and Cal treatment increased the maximum load of the distal femoral metaphysis to a similar extent, suggesting the different mechanism for improving bone strength. This study showed the differential effects of Ris and Cal on cancellous bone in rats with GC-induced osteopenia.

REFERENCES

13) Iwamoto J, Seki A, Takeda T, Shen CI, Yeh JK. 2005.
Effects of risendronate and calcitriol on the structure and mechanical properties of cancellous bone in glucocorticoid-treated rats. 35th Sun Valley Workshop of Skeletal Biology (online abstract).

