Incomplete Discrete Wavelet Transform and Its Application to a Poisson Equation Solver

この論文にアクセスする

この論文をさがす

著者

抄録

This paper introduces an incomplete discrete wavelet transform (iDWT), which is applied to a preconditioning method for linear equation systems discretized from differential equations. The linear systems can be solved with a matrix solver, but the convergence speed becomes worse with increase of condition number, which exponentially increases with the scale magnification. The use of wavelets in linear systems has an advantage in that a diagonal resealing makes the number become bounded by a limited value, and the advantage is utilized in a matrix solver presented by G. Beylkin. The method, however, has several problems and is difficult to apply to the real numerical analysis. To solve the problems, we introduce the iDWT method that approximates the discrete wavelet transform and is easy to implement in the computational analysis. The effects and advantages of the iDWT preconditioning are confirmed with one- and two-dimensional boundary value problems of elliptic equations. On Cray C94D vector computer, the iDWT preconditioned CG method can solve 2-D Poisson equation, discretized with 1, 024×1, 024 grid points, about 14 times faster than the ICCG method.

収録刊行物

  • Journal of nuclear science and technology  

    Journal of nuclear science and technology 33(7), p.555-561, 1996-07-25 

    Atomic Energy Society of Japan

参考文献:  8件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  4件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002075094
  • NII書誌ID(NCID)
    AA00703720
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00223131
  • NDL 記事登録ID
    4060406
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A460
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ