Acceleration Mechanism of Vertical Displacement Event and its Amelioration in Tokamak Disruptions

この論文にアクセスする

この論文をさがす

著者

抄録

Vertical displacement events (VDEs), which are frequently observed in disruptive discharges of elongated tokamaks, are investigated using the Tokamak Simulation Code. We show that disruption events such as a sudden plasma pressure drop (βp collapse) and the subsequent plasma current quench (Ip, quench) can accelerate VDEs due to the adverse destabilizing effect of the resistive shell, which has previously been thought to stabilize VDEs. In a tokamak with a surrounding shell which is asymmetric with respect to the geometric mid-plane, the Ip quench also causes an additional VDE acceleration due to the vertical imbalance of the attractive force. While the shell-geometry characterizes the VDE dynamics, the growth rate of VDEs depends strongly on the magnitude of the βp collapse, the speed of the Ip quench and the n-index of the plasma equilibrium just before the disruption. An amelioration of Ip quench-induced VDEs was experimentally established in the JT-60U tokamak by optimizing the vertical location of the plasma just prior to the disruption. The JT-60U vacuum vessel is shown to be suitable for preventing the βp collapse-induced VDE.

収録刊行物

  • Journal of nuclear science and technology  

    Journal of nuclear science and technology 33(8), p.609-619, 1996-08-25 

    Atomic Energy Society of Japan

参考文献:  21件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002075212
  • NII書誌ID(NCID)
    AA00703720
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00223131
  • NDL 記事登録ID
    4060414
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A460
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ