Small Gas Leakage Rate Measuring and Monitoring System for Spent Fuel Transport/Storage Cask

この論文にアクセスする

この論文をさがす

著者

抄録

A containment function of transport and/or storage casks of radioactive materials is essential to prevent the materials from being released excessively into the environment. It is not practical for containment tests to measure directly the radioactivity release so that gas volumetric leakage rates are usually assessed and gas pressure decrease or increase method is usually applied. As gas flow model for evaluation, the ISO standards has deleted the concept of choked flow which is adopted by ANSI N14.5. Provided that the choked flow is not adopted to the leakage rate evaluation, the criteria of the test should be severer, and a new leakage rate measuring system with high accuracy and reasonable measuring time is required. Transport casks are often inspected in a temporary cask-storage facility where simultaneous measurement of many casks is required. In a storage cask system, multiple casks are monitored on their containment function during a storage period, and the method for simultaneous monitoring at many points for long term is required. In this study, two kinds of small gas leakage rate measuring systems are developed. One is to measure gas leakage rates directly and is called "flow measuring system", which can measure gas leakage rate of 10<SUP>-4</SUP> to 10<SUP>-2</SUP>cm<SUP>3</SUP>/s with high accuracy and short measuring time. The other is to measure the pressure decreasing rate and is called "pressure decreasing rate measuring system", which can monitor the pressure change at many points simultaneously.

収録刊行物

  • Journal of nuclear science and technology  

    Journal of nuclear science and technology 34(12), 1140-1146, 1997-12-25 

    Atomic Energy Society of Japan

参考文献:  8件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002078577
  • NII書誌ID(NCID)
    AA00703720
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00223131
  • NDL 記事登録ID
    4371578
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A460
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ