Development of the Ultra-microhardness Technique for Post Irradiation Examination of Fuel Cladding Tubes

この論文にアクセスする

この論文をさがす

著者

抄録

Hardness measurements are potentially valuable for a quantitative discussion of embrittlement in the inner portions of fuel cladding tubes. The size of the indentation, however, is not negligible compared to the measuring region, even when a micro Vickers hardness tester is employed. This limits the measuring technique, and very little has been studied about degradation phenomena in the inner portion of the tubes.<BR>A hardness measurement system, equipped with a depth-sensing indentation instrument, and the necessary post irradiation examination technique for specimens with high radioactivity were successfully developed and the following observations were obtained from the system's application example. The diffusion coefficient of oxygen obtained from the hardness of an unirradiated zirconium lined cladding with simulated oxidation in the fuel rod showed good agreement with literature data. The calculated diffusion coefficient from hardness in the inner portion of irradiated Zircaloy-2 fuel rods was almost the same value as that of unirradiated zirconium, which implied that neither neutron irradiation nor fission fragment bombardment enhanced the oxygen diffusion in the inner portion of cladding tube.

収録刊行物

  • Journal of nuclear science and technology  

    Journal of nuclear science and technology 35(5), 344-352, 1998-05-25 

    Atomic Energy Society of Japan

参考文献:  19件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002079389
  • NII書誌ID(NCID)
    AA00703720
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00223131
  • NDL 記事登録ID
    4474206
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A460
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ