Best Estimate BWR Transient Analysis with TRACG Assessment using Data from BWR Startup Tests and LOCA Integral Tests

この論文にアクセスする

この論文をさがす

著者

抄録

TRACG is a new version of the best estimate BWR transient analysis code, which utilizes a multi-dimensional two-fluid model for the thermal hydraulics and a three-dimensional neutron kinetics model. A three-dimensional neutronics, a fully implicit integration scheme and models for advanced BWR components have been implemented in the code upon TRAC-BF1.<BR>Assessment of TRACG has been performed in this study for the predictive capability of plant transients, which include thermal-hydraulic and neutronic interactions, as affected by responses of the plant control system. Simulations were presented for BWR representative transient tests, which were done as part of a series of BWR5 startup tests. As for the capability to predict thermal hydraulics during the design basis LOCAs, simulations were presented for the LOCA integral tests conducted in the ROSA-III at JAERI and the Hitachi TBL, which had been used for assessment of the TRAC former version.<BR>Consequently, (1) the space-dependent power flow transitions in a BWR were confirmed by TRACG simulations in which the module coupled with neutronics and thermal hydraulics during transients has been newly introduced, and (2) the characteristic thermal-hydraulic phenomena including multi-channel effects during the design basis LOCAs were confirmed, as well as the TRAC former version, by TRACG simulations on which the influence due to a fully implicit integration scheme has not extended. Capability of TRACG to predict BWR transients ranging from simple plant operational transients to design basis LOCAs was successfully demonstrated.

収録刊行物

  • Journal of nuclear science and technology  

    Journal of nuclear science and technology 35(8), 607-620, 1998-08-25 

    Atomic Energy Society of Japan

参考文献:  24件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002079951
  • NII書誌ID(NCID)
    AA00703720
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00223131
  • NDL 記事登録ID
    4541367
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A460
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ