地理的デ-タの現地収集--マシン学習技術を用いた分類作業における必要最小デ-タの点検について Geographic Field Data Collection : Using machine learning techniques to verify minimum data requirements for the classification task

この論文にアクセスする

この論文をさがす

著者

抄録

Geographers and environmental scientists prefer to construct Spatial Information System (SIS) decision support from the smallest possible data. This is due to the considerable cost of ground-based surveys for data collection. This paper extends on the work of (Kirkby, 1994; Eklund <I>et al</I>., 1995) and reports on the use of machine learning classifiers to obtain the minimum sample size for ground-based data surveys. The study proposes a method to assess ground-based data collection using machine learning classifiers.<BR>In this domain, the inductive learning program C4.5 (Quinlan, 1993) was used to verify that a high performance classifier, better than 95 % classification accuracy on unseen data, can be constructed using 235 sample points in the study area. We compare this result to the magnitude of sample sizes required for back-propagation neural networks (NN) and instance-based learning (IBL) with the same classification accuracy on unseen data. We examine the reasons and implications for these variations for classification accuracy in this domain.

収録刊行物

  • 地學雜誌  

    地學雜誌 105(5), 636-648, 1996-10-25 

    Tokyo Geographical Society

参考文献:  22件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002234659
  • NII書誌ID(NCID)
    AN00322536
  • 本文言語コード
    ENG
  • 資料種別
    SHO
  • ISSN
    0022135X
  • NDL 記事登録ID
    4066329
  • NDL 雑誌分類
    ZM41(科学技術--地球科学)
  • NDL 請求記号
    Z15-169
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ