Multifractal Measures of Time Series of Earthquakes
Access this Article
Search this Article
Author(s)
Abstract
The generalized fractal dimensions are measured for the time series based on two complete earthquake catalogues: one with M≥6 earthquakes occurring in the northsouth seismic belt of mainland China during the 19001990 period published by Ma et al. (1992) and the other with M≥5.5 earthquakes occurring in southern California, USA during the 19151994 period compiled by Press and Allen (1995). The loglog plot of C<SUB>q</SUB> versus t, where C<SUB>q</SUB>(t) is the generalized correlation integral and t is the interoccurrence time in years between two events, at positive q shows a linear istribution when t<t<SUB>c</SUB>. D<SUB>q</SUB> is the slope of this linear portion. The value of t<SUB>c</SUB> decreases from 50.1 to 39.8 years for Chinese earthquakes and from 50.1 to 31.6 years for southern California events as q is increased from 0 to 15. For M≥6 Chinese earthquakes, the welldistributed, monotonically decreasing function of D<SUB>q</SUB>, with increasing q would imply that such earthquakes have formed a multifractal time series. In contrast, the M≥5.5 southern California earthquakes might have not yet formed a complete multifractal time series or the number of these events is too small to accurately estimate the multifractal dimensions, especially for large qs. Different degrees of complexity of fault distributions in the two seismic regions might also be a factor in causing the difference in the D<SUB>q</SUB>q relations. In addition, the results also suggest that a D<SUB>q</SUB>q relation is better than the first three commonlyused values of D<SUB>q</SUB> to completely represent a multifractal time series.
Journal

 Earth, Planets and Space

Earth, Planets and Space 45(5), 331345, 199710
The Seismological Society of Japan, The Volcanological Society of Japan , The Geodetic Society of Japan