Melt Instabilities and the Effect of Surface Tension on Preventing Edge Serrations in Melt Overflow Alloy Strip Casting

この論文にアクセスする

この論文をさがす

著者

    • KALKANLI Ali
    • Middle East Technical University, Department of Metallurgical and Materials Engineering
    • WOOD John V.
    • Middle East Technical University, Department of Metallurgical and Materials Engineering, The University of Nottingam, Materials Engineering and Materials Design, University
    • BRAITHWAITE Nicholas
    • Middle East Technical University, Department of Metallurgical and Materials Engineering, The Open University, Faculty of Technology, Materials Discipline

抄録

Direct casting of metallic strip onto a single rotating chiller is possible by the displacement of liquid metal in a horizontal pouring channel against a vertically moving chiller surface. In the case where of a high liquid/vapour surface tension exists, the liquid cannot be dragged out of the melt pool by momentum transfer. The critical surface tension values for making strip in a series of 304 stainless steels as measured by a modified oscillating droplet technique, values 2.1-1.4 Nm<sup>-1</sup>. Surface tension values greater than these lead strip breakup. Casting of alloys with a low surface tension such as 1.3-1.1 Nm<sup>-1</sup> at a wheel speed of 2.7 ms<sup>-1</sup> can result instability waves such as Marangoni, Kelvin-Helmholtz and capillary waves. These waves result in the formation of edge serrations in the solidified strip. If the casting speed is sufficiently high to overcome these melt instabilities, strips can be produced with a smooth edge and uniform dimensions. In this paper the results of melt overflow direct strip casting experiments with different alloy and process conditions for strip dimensions up to 700 μm and 40 mm wide are presented.

収録刊行物

  • ISIJ international  

    ISIJ international 38(2), 142-148, 1998-02-15 

    The Iron and Steel Institute of Japan

参考文献:  21件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

ページトップへ