Accretion-Disk Corona Advected by External Radiation Drag II. Relativistic Case

Access this Article

Search this Article



We examined the accretion-disk corona (beta-corona) for a relativistic case under the pseudo-Newtonian approximation. The beta-corona is dynamically driven via radiation drag exerted by a central luminous sourceand an alpha accretion disk, itself. The corona is assumed to be geometrically thin and optically thin. When the central source is sufficiently luminous, the specific angular momentum of the corona gas is lost by radiation drag of the radiation field produced by the central source. As a result, the rotational velocity of the corona gas becomes smaller than the Keplerian one, and the corona gas is advected inward on a dynamical timescale - a dynamical disk corona. When the accretion disk is luminous, on the other hand, the corona gas tends to corotate with the underlying disk by radiation drag of the radiation field produced by the alpha-disk. As a result, the advection of the corona gas is suppressed. Emission-line profilesexpected from such an advected disk corona were also calculated, particularly bearing in mind the recently observed X-ray line of MCG-6-30-15. The line profiles are generally double peaked where the blue peaksare stronger than the red peaks because of relativistic effects. The separation of the two peaks depends on the brightness of the central source as well as the size of the emitting regions. The best-fit parametersfor MCG-6-30-15 are the followings: the central luminosity normalized by the Eddington luminosity 0.6, the normalized disk luminosity also 0.6, the central radius of the emitting region 5 Schwarzschild radii, the width of the emitting region also 5 Schwarzschild radii, and the inclination angle 30°.


  • Publications of the Astronomical Society of Japan  

    Publications of the Astronomical Society of Japan 48(6), 849-855, 1996-12-01 

    Astronomical Society of Japan

References:  10

You must have a user ID to see the references.If you already have a user ID, please click "Login" to access the info.New users can click "Sign Up" to register for an user ID.


  • NII Article ID (NAID)
  • Text Lang
  • Article Type
  • ISSN
  • NDL Article ID
  • NDL Source Classification
  • NDL Call No.
  • Data Source
    CJP  NDL  IR 
Page Top