ニューラルネットによるフーリエ変換法の性能改善 Performance Improvement of the Fourier Transform Method in PIV by Means of a Neural Network

この論文にアクセスする

この論文をさがす

著者

抄録

In this paper, a multiple-layer neural network model has been applied to the Fourier transform method in 2-D Particle Image Velocimetry to improve the measurement accuracy. The input information of the neural network is the complex phase that is extracted from the Fourier transforms of two images captured in a short time interval, and the output is the spatial shift of the pattern on the images. The learning is performed by a conventional error back propagation method. The performance test shows that the present method is robust against velocity fluctuation and the computing time can be reduced to about 75% of that of the original Fourier transform method.

収録刊行物

  • 可視化情報学会誌 = Journal of the Visualization Society of Japan

    可視化情報学会誌 = Journal of the Visualization Society of Japan 15, 161-164, 1995-07-01

    The Visualization Society of Japan

参考文献:  7件中 1-7件 を表示

  • <no title>

    奥野

    第4回流れの計測大阪シンポジウム講演論文集 177, 1987

    被引用文献1件

  • <no title>

    嶋田

    日本機械学会論文集B編 58(552), 2472, 1992

    被引用文献1件

  • <no title>

    飯沼

    ニューロコンピュータ 38, 1989

    被引用文献1件

  • <no title>

    矢川

    ニューラルネットワーク 2, 1992

    被引用文献1件

  • <no title>

    村田

    日本機械学会講演論文集 (934-2), 88, 1993

    被引用文献1件

  • <no title>

    山本

    可視化情報 13, Suppl. (2), 103, 1993

    被引用文献1件

  • ロバスト統計に基づく画像解析

    栗田 多喜夫

    電子情報通信学会誌 76(12), 1293-1297, 1993-12-01

    参考文献9件 被引用文献28件

各種コード

ページトップへ