動的・静的混合型リカレントニューラルネットワークによる温度分布推定 Estimation of Temperature Profiles Using Composite Dynamic/Static Recurrent Neural Networks

この論文にアクセスする

この論文をさがす

著者

抄録

Quantitative thermal flow visualization using image processing is very useful for obtaining velocity vector or temperature profiles in a thermal flow field. The velocity vector and temperature profiles are able to be simultaneously measured from color images visualized by a thermo-sensitive liquid crystal suspension method. The temperature profile, however, partly lacks information on temperatures in the field because of the narrow temperature range in which the liquid crystals present color. Temperature profiles over the entire flow field, therefore, are unable to be obtained.<BR>This paper proposes a new algorithm for estimating unmeasurable temperatures from measurable temperatures. As the first step, an unsteady heat conduction field is modeled by using composite dynamic/static recurrent neural networks from the known information on temperatures. Consequently, the unknown information on temperatures is estimated from the neural network model.

収録刊行物

  • 可視化情報学会誌 = Journal of the Visualization Society of Japan  

    可視化情報学会誌 = Journal of the Visualization Society of Japan 15, 169-172, 1995-07-01 

    The Visualization Society of Japan

参考文献:  2件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

ページトップへ