遺伝的アルゴリズムによる学習係数の調整法を用いたニューロ・ファジィ負荷電力変動抑制法 A Control Strategy of Levelling Load Power Fluctuation Based on Fuzzy-Neural Network by Tuning Coefficients of Learning Rate with Genetic Algorithm

この論文にアクセスする

この論文をさがす

著者

抄録

The effective usage of the power facilities can be realized by leveling the fluctuating active power and compensating the reactive power. The fuzzy and fuzzy-neural network control strategy of superconducting magnet energy storages (SMES) was proposed for this purpose. The control results depend on the values of coefficients of learning rate in fuzzy-neural network. Therefore, it is desired to obtain better control results that the coefficients of learning rate are tuned to the optimum value.<br>In this paper, the control strategy based on an auto-tuning of scaling factors with neural network and tuning of coefficients of learning rate of neural network with genetic algorithm is proposed for leveling load fluctuation. Encoding and decoding of coefficients of learning rate and selection, crossover and mutation of genetic operation are shown and crossover rate, mutation rate is discussed. Then, we can achieve the better leveling of load power fluctuation by using fuzzy-neural network with genetic algorithm.

収録刊行物

  • 電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society  

    電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society 117(5), 552-557, 1997-05 

    The Institute of Electrical Engineers of Japan

参考文献:  12件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  1件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002724400
  • NII書誌ID(NCID)
    AN10012320
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    09136339
  • NDL 記事登録ID
    4205161
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-1608
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ