確率分布・可能性分布を考慮したオートマトン学習ネットワーク Probability and Possibility Automation Learning Network

この論文にアクセスする

この論文をさがす

抄録

Universal Learning Network(ULN) which is a generalized Neural Network, can be used to model and control large scale complicated systems. But ULN can not be applied to discrete event systems. Therefore a discrete event oriented learning network which is called Automaton Learning Network(ALN) has been already proposed. ALN has the same structure as ULN has. In this paper. a generalized type of ALN named Probability Automaton Learning Network(PrALN) and Possibility Automaton Learning Network(PoALN) are presented in order to realize an ALN with non-deterministic nature. In the simulations with a relatively simple model, we studied the fundamental characteristics of PrALN and PoALN.

収録刊行物

  • 電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society  

    電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society 118(3), 291-298, 1998-03 

    The Institute of Electrical Engineers of Japan

参考文献:  14件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002726409
  • NII書誌ID(NCID)
    AN10012320
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    09136339
  • NDL 記事登録ID
    4413259
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-1608
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ