局所ファジイ再構成法を用いた水力発電所流入量データの短期予測 Short-term Prediction of Water Flow Data into Hydro-electric Power Stations Using Local Fuzzy Reconstruction Method

この論文にアクセスする

この論文をさがす

著者

抄録

For predicting the flow into a hydro-electric power station, complex natural phenomena have to be dealt with, so conventional mathematical models based on hydraulics may not produce satisfactory results. When a neural network is used, its construction cannot be easily determined, and so extra neural networks have to be provided separately in addition to the normal neural network, according to experts' opinions about the problem. To solve these problems, the authors took the standpoint that if the inflow rate time-series data for hydro-electric power stations exhibit deterministic chaos, the status in the near future can be predicted. So the authors have applied the local fuzzy reconstruction method as a deterministic nonlinear short-term prediction method to data for the flow of water into hydro-electric power stations. In this paper, typical outflow analysis method using conventional mathematical models are first described briefly. Next, the "Local Fuzzy Reconstruction Method" is described. Third, chaotic behavior of water flow data into hydro-electric power stations are illustrated. Finally, the results of applying the method to the prediction of the flow into hydro-electric power stations are presented.

収録刊行物

  • 電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society  

    電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society 118(3), 329-334, 1998-03 

    The Institute of Electrical Engineers of Japan

参考文献:  12件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002726483
  • NII書誌ID(NCID)
    AN10012320
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    09136339
  • NDL 記事登録ID
    4413264
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-1608
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ