ガラス・過冷却液体における動的不均一性 Kinetic Heterogeneities in Highly Supercooled Liquids

この論文にアクセスする

この論文をさがす

著者

抄録

Highly supercooled liquids with soft-core potentials are studied via molecular dynamics simulations in two and three dimensions in quiescent and sheared conditions. We may define bonds between neighboring particle pairs unambiguously owing to the sharpness of the first peak of the pair correlation functions. Upon structural rearrangements, they break collectively in the form of clusters whose sizes grow with lowering the temperature T. The bond life time T<SUB>b</SUB>, which depends on T and the shear rate γ, is on the order of the usual structural or α relaxation time T<SUB>α</SUB> in weak shear γT<SUB>α</SUB> <<1, while it decreases as 1/γ, in strong shear γT<SUB>α</SUB> >> 1 due to shear-induced cage breakage. Accumulated broken bonds in a time interval (∼0. 05T<SUB>b</SUB>) closely resemble the critical fluctuations of Ising spin systems. For example, their structure factor is well fitted to the Ornstein-Zernike form, which yields the correlation length ζ representing the maximum size of the clusters composed of broken bonds. We also find a dynamic scaling relation, T<SUB>b</SUB>∼ζ<SUP>z</SUP>, valid for any T and γ with z=4 in two dimensions and z=2 in three dimensions. The viscosity is of order T<SUB>b</SUB> for any T and γ, so marked shear-thinning behavior emerges. The shear stress is close to a limiting stress in a wide shear region. We also examine the motion of tagged particles in shear in three dimensions. The diffusion constant is found to be of order T<SUB>b</SUB><SUP>-v</SUP> with v=0. 75∼0. 8 for any T and γ, so it is much enhanced in strong shear compared with its value at zero shear. This indicates breakdown of the Stokes-Einstein relation in accord with experiments. The origin of the breakdown is discussed in detail.

収録刊行物

  • 高圧力の科学と技術 = The Review of high pressure science and technology  

    高圧力の科学と技術 = The Review of high pressure science and technology 9(2), 134-141, 1999-05-20 

    The Japan Society of High Pressure Science and Technology

参考文献:  31件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10002845945
  • NII書誌ID(NCID)
    AN10452913
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    0917639X
  • NDL 記事登録ID
    4743131
  • NDL 雑誌分類
    ZP1(科学技術--化学・化学工業)
  • NDL 請求記号
    Z17-1589
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ