# 蛭子井氏の定理と(15_4, 20_3)コンフィグレイションEbisui's theorem and a (15_4, 20_3) configuration

## 抄録

A simple geometric proof of Ebisui's theorem, if two triangles <I>A</I><SUB>1</SUB><I>A</I><SUB>2</SUB><I>A</I><SUB>3</SUB> and <I>B</I><SUB>1</SUB><I>B</I><SUB>2</SUB><I>B</I><SUB>3</SUB> are perspective and <I>C</I><SUB>3</SUB> = <I>A</I><SUB>1</SUB><I>B</I><SUB>2</SUB>∩<I>A</I><SUB>2</SUB><I>B</I><SUB>1</SUB>, <I>C</I><SUB>1</SUB>=<I>A</I><SUB>2</SUB><I>B</I><SUB>3</SUB>∩<I>A</I><SUB>3</SUB><I>B</I><SUB>2</SUB>, <I>C</I><SUB>2</SUB>=<I>A</I><SUB>3</SUB><I>B</I><SUB>1</SUB>∩<I>A</I><SUB>1</SUB><I>B</I><SUB>3</SUB> then <I>A</I><SUB>1</SUB><I>A</I><SUB>2</SUB> <I>A</I><SUB>3</SUB> and <I>C</I><SUB>1</SUB><I>C</I><SUB>2</SUB><I>C</I><SUB>3</SUB> are also perspective, is given, which is using Desargues's theorem and its converse. With the theorem and an additional theorem, a (15<SUB>4</SUB>, 20<SUB>3</SUB>) configuration can be constructed, which is transitive both on points and lines.

## 収録刊行物

• 図学研究

図学研究 32(4), 25-28, 1998-12-01

日本図学会

## 各種コード

• NII論文ID(NAID)
10002847162
• NII書誌ID(NCID)
AN00125240
• 本文言語コード
JPN
• 資料種別
ART
• ISSN
03875512
• NDL 記事登録ID
2543876
• NDL 雑誌分類
ZM1(科学技術--科学技術一般)
• NDL 請求記号
Z14-457
• データ提供元
CJP書誌  CJP引用  NDL  J-STAGE

ページトップへ