A Cartesian Grid Generation Method Considering a Complicated Cell Geometry at the Body Surface

この論文にアクセスする

この論文をさがす

著者

抄録

A cell-splitting method for Cartesian grid generation that has the capability of taking into account the cases of thin body and sharp edge is proposed in this paper. Such cases are frequently found when solving the flow around a very thin wing, such as that of a supersonic transport (SST). The method has also been extended to treat the problem of multiple solid regions within a cell, which is sometimes encountered at a highly curved body surface. Validation of the method proposed here is carried out on a sharp, thin double wedge in a supersonic flow, where significant improvements in accuracy are achieved at the cost of a small increase in the number of cells. Furthermore, application of the present method to a model of SST shows its effectiveness on a three-dimensional, realistic geometry. As a result of making a pseudo-planar approximation for body surface elements, the total number of body surface elements was reduced by a factor of about 3.2 in this application. Local grid refinement by relocating grid cells to a curved surface is also proposed, so that a more accurate solution is obtained with a reasonable number of cells.

収録刊行物

  • Transactions of the Japan Society for Aeronautical and Space Sciences  

    Transactions of the Japan Society for Aeronautical and Space Sciences 43(139), 8-15, 2000-05-04 

    THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES

参考文献:  15件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10004294259
  • NII書誌ID(NCID)
    AA0086707X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    05493811
  • NDL 記事登録ID
    5423298
  • NDL 雑誌分類
    ZN25(科学技術--運輸工学--航空機・ロケット)
  • NDL 請求記号
    Z53-M236
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ