A Cartesian Grid Generation Method Considering a Complicated Cell Geometry at the Body Surface

Bibliographic Information

Other Title
  • Cartesian Grid Generation Method Considering a Complicated Cell Geometry at the Body Surface

Search this article

Abstract

A cell-splitting method for Cartesian grid generation that has the capability of taking into account the cases of thin body and sharp edge is proposed in this paper. Such cases are frequently found when solving the flow around a very thin wing, such as that of a supersonic transport (SST). The method has also been extended to treat the problem of multiple solid regions within a cell, which is sometimes encountered at a highly curved body surface. Validation of the method proposed here is carried out on a sharp, thin double wedge in a supersonic flow, where significant improvements in accuracy are achieved at the cost of a small increase in the number of cells. Furthermore, application of the present method to a model of SST shows its effectiveness on a three-dimensional, realistic geometry. As a result of making a pseudo-planar approximation for body surface elements, the total number of body surface elements was reduced by a factor of about 3.2 in this application. Local grid refinement by relocating grid cells to a curved surface is also proposed, so that a more accurate solution is obtained with a reasonable number of cells.

Journal

Citations (5)*help

See more

References(22)*help

See more

Details

Report a problem

Back to top