溶湯撹拌法によるSiC_p/6061アルミニウム合金複合材料の超塑性に及ぼす圧延加工の影響 Effect of the hot roll working on the superplasticity of the SiC_p/6061 aluminum alloy composite made by a Vortex method

この論文にアクセスする

この論文をさがす

著者

抄録

Effect of hot rolling and testing temperature on superplastic characteristics of a SiC<sub>p</sub>/6061 aluminum alloy composite made by a vortex method before squeeze casting and extrusion were investigated in order to make clear the superplastic deformation mechanism. Total rolling strain of about 94% was given to the composites in rolling temperatures from 843 K to 873 K and in the rolling strain per passes of 0.05 to 0.30. Fine grain size of about 1.6 μm was obtained in the composite rolled at temperature of 573 K and at the strain per pass of 0.10. The flow stress was not so effected by rolling strain per passes, and the composite exhibits m-value of 0.33 and the maximum total elongation of about 350% at the strain rate of 0.24 s<sup>−1</sup> and at 853 K. Total elongation of more than 100% was obtained in the wide strain rate region from 0.003 to 1.30 s<sup>−1</sup> and in rolling temperatures of 573 K, 673 K, and 723 K. Relationship between ε<sup>1/2</sup> and σ became linear when exponent of <i>n</i> = 2 was selected. Apparent activation energy determined from relationship between strain rate and effective stress (=flow stress minus threshold stress) was higher than that of lattice self diffusion of aluminum so that it is thought that high strain rate superplasticity of the composite could occur by grain boundary sliding, and grain boundary diffusion and liquid phase accommodation mechanisms. On the fracture surface of the composite after superplastic deformation, filaments and cavities in striation structures were observed and it became clear that on the microstructural level superplastic phenomena occur.

収録刊行物

  • 軽金属  

    軽金属 49(12), 600-606, 1999-12-30 

    The Japan Institute of Light Metals

参考文献:  28件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  1件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10004453715
  • NII書誌ID(NCID)
    AN00069773
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    04515994
  • NDL 記事登録ID
    4952718
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z17-284
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ