Feuilletages et topologie spectrale

この論文にアクセスする

この論文をさがす

著者

抄録

Let \mathscr{F} be a codimension-one foliation, transversally oriented, of class C<SUP>r</SUP> (r≥q 0) on a connected closed manifold M. The class of a leaf F of \mathscr{F} is defined to be the union of all leaves G with overline{F}=overline{G}. Let X be the space of classes of leaves in M and let X<SUB>0</SUB> be the union of open subsets of X which are homeomorphic to \bm{R} or to S<SUP>1</SUP>. In this paper we prove that if the level of \mathscr{F} is well defined (in the sense of [{12}]), then X-X<SUB>0</SUB> is a spectral space.

収録刊行物

  • Journal of the Mathematical Society of Japan

    Journal of the Mathematical Society of Japan 52(2), 447-464, 2000-04

    The Mathematical Society of Japan

参考文献:  12件中 1-12件 を表示

各種コード

  • NII論文ID(NAID)
    10004480360
  • NII書誌ID(NCID)
    AA0070177X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00255645
  • NDL 記事登録ID
    5374870
  • NDL 雑誌分類
    ZM31(科学技術--数学)
  • NDL 請求記号
    Z53-A209
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ