Novel Finite Particle Method for Gyrodynamics Analysis

この論文にアクセスする

この論文をさがす

著者

抄録

Traditionally, Euler's equations are commonly employed for the analyses of interesting gyrodynamics problems. Nevertheless, they generally give no idea how these complicated gyroscopic forces are mutually interacting. Thus, we may risk missing some insights regarding working forces. Therefore, in this study, we present a so-called "finite particle method, " which simulates a gyroscope by a small number of dynamically equivalent particles (usually 2 to 8 only) rigidly connected. This method largely degenerates complicated 3-D gyrodynamics to a particle dynamics problem in a rotating frame. The finite particle method has elegantly demonstrated its validity by successfully deriving the same steady gyrodynamics equations as that derived from Euler's approach, yet only in amazingly minimal steps for some cases. Surprisingly enough, by this method, one can swiftly understand some delicate gyrodynamics phenomena more deeply by merely inspecting centripetal and Coriolis forces particle by particle, without even knowing what angular momentum is. In short, this finite particle method is characterized by its simpler concept, succinct derivation, and possibly insightful understanding of intrinsic force interactions for some gyrodynamics problems as demonstrated in the retrograding phenomenon of disk-shaped satellites and other examples.

収録刊行物

  • Transactions of the Japan Society for Aeronautical and Space Sciences  

    Transactions of the Japan Society for Aeronautical and Space Sciences 43(140), 46-54, 2000-08-04 

    THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES

参考文献:  16件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10004532909
  • NII書誌ID(NCID)
    AA0086707X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    05493811
  • NDL 記事登録ID
    5485779
  • NDL 雑誌分類
    ZN25(科学技術--運輸工学--航空機・ロケット)
  • NDL 請求記号
    Z53-M236
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ