Parameter Identification of Spin-Stabilized Projectiles Using a Modified Newton-Raphson Minimization Technique

この論文にアクセスする

この論文をさがす

著者

抄録

A modified Newton-Raphson minimization technique for determining aerodynamic coefficients and stability derivatives of spin-stabilized projectiles with a six-degree-of-freedom nonlinear dynamical model was developed. The dynamical model for the projectiles is constructed having process noise in the system, and the instrumentation noise of the system outputs is simulated by a data model statistically similar to the measured data. The state equations of the dynamical system are continuous types while the measurement data are discrete. A continuous-discrete estimation model for the motion of the projectiles is constructed in this paper. The state variables of the system were estimated by the extended Kalman filter, and the system parameters were identified by the modified Newton-Raphson technique based on the maximum likelihood criterion. Research results show that parts of the parameters can be identified under proper noise intensity. However, the accuracy of identification is strongly influenced by both process and measurement noise, Moreover, parameter sensitivity to the system behavior is crucial for the success of identification. Two typical aerodynamic characteristics of projectiles, 105 and 20mm, are imposed to investigate the applicability of state estimation and parameter identification. It is found that the drag coefficient of zero angle-of-attack and the rolling moment derivative and identified with effective accuracy in a wide range of noise levels. On the other hand, other parameters are more difficult to identify, but the causes of deficiency for particular parameters in identification are discussed.

収録刊行物

  • Transactions of the Japan Society for Aeronautical and Space Sciences  

    Transactions of the Japan Society for Aeronautical and Space Sciences 43(140), 88-95, 2000-08-04 

    THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES

参考文献:  12件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10004532998
  • NII書誌ID(NCID)
    AA0086707X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    05493811
  • NDL 記事登録ID
    5485838
  • NDL 雑誌分類
    ZN25(科学技術--運輸工学--航空機・ロケット)
  • NDL 請求記号
    Z53-M236
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ