ガスセンサを用いた光環境下におけるEpipremnum aureumのホルムアルデヒド浄化率の導出 Purification Rate of Epipremnum aureum for Formaldehyde in Light

この論文にアクセスする

この論文をさがす

著者

抄録

Houses are gradually becoming airtight due to heat insulating structures. Thus, air exchange is decreasing in an indoor environment. Indoor air-quality is also worsening by generation of VOCs (Volatile Organic Compounds) from building materials, and it causes sick-house syndrome. On the other hand, it is known that plants and microorganisms inhabiting the rhizosphere purifies indoor air-pollutants. The empirical model, however, involves some problems such as the long interval needed for the measuring of the purification process, and the process is modeled by a simple straight line approximation. In this paper, we find the purification process of plants in detail for the basic study of a design that suitably arranges plants in a room. As an example of a typical foliage plant, a purification process of Epipremnum aureum for formaldehyde is measured continuously using a tin oxide gas sensor. As a result, it is found that the purification rate is fixed at about 40%/h when the formaldehyde concentration range is less than 50ppm in the experimental chamber. Therefore, the purification process could be approximated using an exponential function. Furthermore, the purification rate rose with the increasing intensity of illumination.

Houses are gradually becoming airtight due to heat insulating structures. Thus, air exchange is decreasing in an indoor environment. Indoor air-quality is also worsening by generation of VOCs (Volatile Organic Compounds) from building materials, and it causes sick-house syndrome. On the other hand, it is known that plants and microorganisms inhabiting the rhizosphere purifies indoor air-pollutants. The empirical model, however, involves some problems such as the long interval needed for the measuring of the purification process, and the process is modeled by a simple straight line approximation. In this paper, we find the purification process of plants in detail for the basic study of a design that suitably arranges plants in a room. As an example of a typical foliage plant, a purification process of <i>Epipremnum aureum</i> for formaldehyde is measured continuously using a tin oxide gas sensor. As a result, it is found that the purification rate is fixed at about 40%/h when the formaldehyde concentration range is less than 50ppm in the experimental chamber. Therefore, the purification process could be approximated using an exponential function. Furthermore, the purification rate rose with the increasing intensity of illumination.

収録刊行物

  • 電気学会論文誌. E, センサ・マイクロマシン準部門誌 = The transactions of the Institute of Electrical Engineers of Japan. A publication of Sensors and Micromachines Society  

    電気学会論文誌. E, センサ・マイクロマシン準部門誌 = The transactions of the Institute of Electrical Engineers of Japan. A publication of Sensors and Micromachines Society 119(11), 532-537, 1999-11 

    電気学会 = Institute of Electrical Engineers of Japan

参考文献:  22件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  5件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10004834476
  • NII書誌ID(NCID)
    AN1052634X
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    13418939
  • NDL 記事登録ID
    4892688
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-B380
  • データ提供元
    CJP書誌  CJP引用  NDL  IR  J-STAGE 
ページトップへ