An Adaptive Approach to Improve the Accuracy of a Rolling Load Prediction Model for a Plate Rolling Process

この論文にアクセスする

この論文をさがす

著者

    • MORIMOTO Yoshio
    • Research & Development laboratories, Kakogawa Works, Iron & Steel Company, Kobe Steel Ltd.
    • OHE Kenichi
    • Research & Development laboratories, Kakogawa Works, Iron & Steel Company, Kobe Steel Ltd.

抄録

We present a method that integrates off-line rule identification and an on-line adaptive approach to improve the accuracy of a rolling load prediction model for a plate rolling process. Based on the physical model of a plate rolling process, this work presents an empirical and adaptive approach to improve the accuracy ofa rolling load prediction model. Our method consists of an off-line rule identification method and an online adaptive method. Using a hierarchical clustering method, our rule identification method finds a set of opti-malrules that determine appropriate model parameters depending on an operational environment. In contrast to traditional approaches where such rules are determined in an ad-hoc manner, our method provides a "systematic" method to find optimal rules under the specification on model accuracy. Then, using a recursive least-square error method, our on-line adaptive method tunes model parameters by feeding back the observed model errors. Our off-line approach is effective to deal with nonlinear characteristics of the process, and our adaptive approach guarantees to maximize and to maintain the accuracy even if time passes. A successful application of the proposed approach to the plate rolling process is also shown.

収録刊行物

  • ISIJ international  

    ISIJ international 40(12), 1216-1222, 2000-12-15 

    The Iron and Steel Institute of Japan

参考文献:  10件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  2件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

ページトップへ