ANOMALY DETECTION METHOD FOR SPACECRAFTS BASED ON ASSOCIATION RULE MINING

この論文にアクセスする

この論文をさがす

著者

    • YAIRI Takehisa
    • Research Center for Advanced Science and Technology, University of Tokyo
    • KATO Yoshikiyo
    • Research Center for Advanced Science and Technology, University of Tokyo
    • HORI Koichi
    • Research Center for Advanced Science and Technology, University of Tokyo

抄録

This paper proposes a novel anomaly detection method for spacecraft systems based on data-mining techniques. This method automatically constructs a system behavior model in the form of a set of rules by applying pattern clustering and association rule mining to the time-series data obtained in the learning phase, then detects anomalies by checking the subsequent on-line data with the acquired rules. A major advantage of this approach is that it requires little a priori knowledge on the system.

収録刊行物

  • The Journal of space technology and science : a publication of Japanese Rocket Society

    The Journal of space technology and science : a publication of Japanese Rocket Society 17(1), 1-10, 2001-03-01

    Japanese Rocket Society

参考文献:  5件中 1-5件 を表示

各種コード

  • NII論文ID(NAID)
    10008495118
  • NII書誌ID(NCID)
    AA10925183
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    0911551X
  • データ提供元
    CJP書誌  J-STAGE 
ページトップへ