データのクラス振分けとクラス別モデルの同時推定法 Simultaneous Estimation of Data Classification and Corresponding Submodels

この論文にアクセスする

この論文をさがす

著者

抄録

A data classification method using a Boltzmann machine algorithm is proposed in this paper. The purpose of the classification is to determine local submodels which describe the data of each class. The Boltzmann machine is enabled to estimate both classification and submodel parameters at the same time. The method is also used in conjunction with a set of multilayer-perceptron class models, in which the relevant algorithm work on the basis of calculated expectations, rather than actual stochastic behaviors. The network is shown to be successful for classification of iris data and wine data.

収録刊行物

  • 日本神経回路学会誌 = The Brain & neural networks

    日本神経回路学会誌 = The Brain & neural networks 9(2), 92-102, 2002-06-05

    Japanese Neural Network Society

参考文献:  4件中 1-4件 を表示

被引用文献:  5件中 1-5件 を表示

各種コード

  • NII論文ID(NAID)
    10010424815
  • NII書誌ID(NCID)
    AA11658570
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    1340766X
  • データ提供元
    CJP書誌  CJP引用  J-STAGE 
ページトップへ