Non-Destructive Evaluation of Fatigue Damage in Type 316 Stainless Steel Using Positron Annihilation Lineshape Analysis

この論文にアクセスする

この論文をさがす

著者

抄録

We applied positron annihilation lineshape analysis for non-destructive evaluation of fatigue stored in type 316 stainless steel, mainly used in primary water lines of pressurized water reactors (PWR). Using <SUP>68</SUP>Ge as a positron source, an energy spread of annihilation gamma ray peaks from stainless steel specimens was measured. After preparing stress- and strain-controlled fatigue specimens, we investigated the relation between fatigue life and a non-destructive parameter of lineshape analysis defined as the S-parameter and compared the microstructure of the fatigue specimens with the S-parameter. As a result, there was good correlation between the S-parameter and fatigue life; the S-parameter increased with dislocation density monotonically. The relation between the S-parameter and fatigue life in stress-controlled fatigue differed from that in strain-controlled fatigue. The S-parameter increased faster in early stage of the latter than in the former. In stress-controlled fatigue, the change in the S-parameter did not depend on stress amplitude in the range of ratio to yield stress under 0.9. In the strain-controlled fatigue, the change in the S-parameter did not depend on strain amplitude in the range from 0.25 to 0.31%. However, when stress amplitude or strain amplitude became higher, the change in the S-parameter increased largely in the early stage of the fatigue life. We demonstrated systematic data to evaluate the fatigue damage in type 316 stainless steel.

収録刊行物

  • Materials transactions

    Materials transactions 43(4), 727-734, 2002-04-01

    公益社団法人 日本金属学会

参考文献:  13件中 1-13件 を表示

各種コード

  • NII論文ID(NAID)
    10012322521
  • NII書誌ID(NCID)
    AA1151294X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13459678
  • NDL 記事登録ID
    6263303
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z53-J286
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ