Relation between Tensile Deformation Behavior and Microstructure in a Ti-Ni-Co Shape Memory Alloy

Search this article

Abstract

Relation between tensile deformation behavior and microstructure in variously aged Ti–49.7 at%Ni–1.3 at%Co shape memory alloys has been investigated. Stress-strain curves for the alloys aged at 623 K and 723 K for 1.8 ks were of a work-hardening type, but those for the alloys aged at the two temperatures over 28.8 ks were nearly of a constant-stress type, as for binary Ti–51 at%Ni aged alloys. Lenticular precipitates were observed in both the 623 K and 723 K aged alloys, and the distance among the precipitates increased with increasing aging temperature and period, as well as the size of the precipitates. The lenticular precipitates were identified to be of the composition of Ti3(Ni, Co)4 from an EDX analysis. Based on these observations, the constant-stress type stress-strain behavior for the alloys aged over 28.8 ks was attributed to some composition change accompanied with the aging progress by which Ti:(Ni+Co) composition ratio in the matrix of the Ti–Ni–Co alloys approached 1:1, as in the equi-atomic Ti–Ni binary alloys.

Journal

  • MATERIALS TRANSACTIONS

    MATERIALS TRANSACTIONS 43 (5), 834-839, 2002

    The Japan Institute of Metals and Materials

References(13)*help

See more

Details 詳細情報について

Report a problem

Back to top