Superplastic Deformation of AZ61 Magnesium Alloy having Fine Grains

  • Yoshida Yu
    Department of Mechanical Engineering, Nagaoka University of Technology
  • Arai Keita
    Department of Mechanical Engineering, Nagaoka University of Technology
  • Itoh Shota
    Department of Mechanical Engineering, Nagaoka University of Technology
  • Kamado Shigeharu
    Department of Mechanical Engineering, Nagaoka University of Technology
  • Kojima Yo
    President, Nagaoka University of Technology

この論文をさがす

抄録

Extruded Mg-6 mass%Al-1 mass%Zn (AZ61) alloy was grain-refined utilizing Equal Channel Angular Extrusion (ECAE) processing. Initially, the extruded bar of the alloy was ECAE-processed 2-times at 473 K. Subsequently, it was processed 4-times at 448 K. As a result, the grains are refined to less than 1 μm and a large amount of fine Mg17Al12 compound precipitates. Subsequently, the superplastic properties of the ECAE-processed specimens were investigated. Large fracture elongations of over 300% are obtained at 423 K and 448 K, which is below Tm/2 (Tm: melting point of the alloy), at strain rates above 1 × 10−4 s−1 and 1 × 10−3 s−1, respectively. That is, low temperature superplasticity occurs. Furthermore, at a high strain rate of 1 × 10−2 s−1, superplasticity occurs with the elongation of 242% and 398% at relatively low temperatures of 473 K and 523 K, respectively. In the extraordinarily elongated specimens, significant grain boundary sliding is observed with strain rate sensitivity of 0.3∼0.4. The activation energy for superplastic deformation is about 91 kJ/mol, which is close to that for grain boundary diffusion of pure magnesium. It is concluded that the superplastic deformation mechanism of the investigated alloy would be grain boundary sliding accommodated by dislocation slip controlled by grain boundary diffusion.

収録刊行物

被引用文献 (11)*注記

もっと見る

参考文献 (41)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ