Link Between SCN5A Mutation and the Brugada Syndrome ECG Phenotype Simulation Study

書誌事項

タイトル別名
  • Simulation Study

この論文をさがす

抄録

Background The specific changes in the gating kinetics of the sodium current (INa) responsible for its phenotype have remained to be elucidated. In the present study the effect of changes in the gating kinetics of INa on early repolarization (ER) and initiation of phase 2 reentry (P2R) were evaluated in a theoretical epicardial ventricular fiber model. Methods and Results Miyoshi-ICaL was incorporated into the modified Luo-Rudy dynamic (LRd) model. Dispersion at Ito-density was set within a theoretical fiber composed of serially arranged epicardial cells with gap junctions. The following changes in INa kinetics were made: (1) a -10 mV shift in steady-state inactivation, (2) a +10 mV shift in steady-state activation curve, (3) a small inactivation time constant (DEC); P2R and ER were observed. A conduction disturbance within the fiber was simulated and only when the INa-density was decreased did DEC, especially, show a marked increase in the likelihood of causing ER and P2R. Conduction disturbance significantly increased the likelihood causing ER or P2R. Conclusions In this one-dimension model with Ito-density dispersion, DEC-INa precipitates INa-blocker inducible ER. This suggests that the characteristic ST-segment elevation in the Brugada syndrome with SCN5A mutation can be interpreted in part by DEC-INa. Concomitant conduction disturbance may be required to cause P2R at physiological Ito density. (Circ J 2005; 69: 567 - 575)<br>

収録刊行物

  • Circulation Journal

    Circulation Journal 69 (5), 567-575, 2005

    一般社団法人 日本循環器学会

被引用文献 (3)*注記

もっと見る

参考文献 (64)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ