Influence of Temperature on Carbon Dissolution of Cokes in Molten Iron

この論文にアクセスする

この論文をさがす

著者

    • CHAM Sheau Tsuey
    • Cooperative Research Centre for Coal in Sustainable Development, The School of Materials Science and Engineering, The University of New South Wales
    • SUN Haiping
    • Cooperative Research Centre for Coal in Sustainable Development, The School of Materials Science and Engineering, The University of New South Wales
    • SAHAJWALLA Veena
    • Cooperative Research Centre for Coal in Sustainable Development, The School of Materials Science and Engineering, The University of New South Wales

抄録

Coke within the blast furnace not only supports the furnace bed and allows gas flow, it also carburises liquid iron. Although carburisation rates of iron by coke vary considerably between cokes, the factors controlling it have not been clearly identified. In this study the rate of carbon dissolution from two cokes prepared from Australian coals, and synthetic graphite, into liquid iron has been measured in the temperature range 1723–1823 K. The apparent activation energy, <i>E</i><sub>a</sub>, obtained for synthetic graphite (<i>E</i><sub>a</sub>=54 kJ mol<sup>−1</sup>) is in agreement with literature values. The observed <i>E</i><sub>a</sub> values for Cokes 1 and 3 (479 kJ mol<sup>−1</sup> and 313 kJ mol<sup>−1</sup> respectively) are an order of magnitude larger than those of synthetic graphite. This difference in activation energies is attributed to mineral matter in the coke limiting the interfacial contact area between the carbon source and liquid iron. The interfacial contact area is a function of mineral matter yield and composition, which in turn is a function of temperature. Therefore, as temperature decreases the slag/ash layer produced at the carbon/iron interface can increase in area and viscosity and thus hinder carbon dissolution and increase the apparent activation energy of dissolution.

収録刊行物

  • ISIJ international  

    ISIJ international 46(5), 652-659, 2006-05-15 

    The Iron and Steel Institute of Japan

参考文献:  24件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

ページトップへ