伸張エラスティカの変分原理 Variational Principles of Extensible Elastica

この論文にアクセスする

この論文をさがす

著者

抄録

An extensible elastica is a rigorous mathematical model of the Bernoulli-Euler beam whose cross-sections remain plane and normal to the axis after deformations. The principle of virtual work for the extensible elastica expressed in terms of the normal strain and rotation of the axis is derived from the principle of virtual work in the three-dimensional elasticity. And it is shown that the derived principle yields the exact equilibrium equations for a beam in the large deformations and rotations. Utilizing linear constitutive equations, we get the theorem of stationary potential energy expressed also in terms of the axial strain and rotation. And, from the Trefftz criterion on the second variation of the potential energy, we get the buckling equations for the extensible elastica, which give the buckling load higher than the Euler load for a cantilever elastica subjected to compressive end load.

収録刊行物

  • 日本航空宇宙学会論文集 = Journal of the Japan Society for Aeronautical and Space Sciences  

    日本航空宇宙学会論文集 = Journal of the Japan Society for Aeronautical and Space Sciences 54(628), 210-220, 2006-05-05 

    一般社団法人 日本航空宇宙学会

参考文献:  9件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018055338
  • NII書誌ID(NCID)
    AA11307372
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    13446460
  • NDL 記事登録ID
    7964368
  • NDL 雑誌分類
    ZN25(科学技術--運輸工学--航空機・ロケット)
  • NDL 請求記号
    Z74-B503
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ