Crystal settling and crystal growth of olivine in magmatic differentiation - the Murotomisaki Gabbroic Complex, Shikoku, Japan

この論文にアクセスする

この論文をさがす

著者

    • HOSHIDE Takashi
    • Division of Earth and Planetary Sciences, Department of Geology and Mineralogy, Graduate School of Science, Kyoto University
    • OBATA Masaaki
    • Division of Earth and Planetary Sciences, Department of Geology and Mineralogy, Graduate School of Science, Kyoto University

抄録

The Murotomisaki Gabbroic Complex is a sill-like layered intrusion of up to 220 m in thickness and is located at Cape Muroto, Kochi Prefecture, Japan. There are several olivine-rich zones within the intrusion, which may have been formed through accumulation of olivine crystals. However, up to now it has not been clear as to whether all of the olivine-rich zones formed in this way. To clarify this, we reinvestigated the layered structure by collecting a consistent data set of modal composition, crystal size, and crystal number density of olivine from throughout the intrusion. It was found out that nearly all of the olivine crystals, in terms of crystal numbers, occur in the basal olivine-rich zone (within 40 m of the base of the intrusion), and the average value of the crystal number density of olivine throughout the entire intrusion coincides with the crystal number density of olivine in the outermost parts of the lower and upper chilled margins. Hence, we conclude that most primary olivine phenocrysts within the magma settled under the influence of gravity and accumulated to form the basal olivine-rich zone. The crystal number density of olivine within the mid-level zones (40-100 m from the base of the intrusion) is much less than the initial values, as indicated by values recorded in the chilled margins. It is proved that the increase of the olivine mode within this zone is attributed not to the crystal accumulation of olivine but to the increase of the crystal size of olivine, i.e., the crystal growth. In this way, considering the mode, crystal size, and crystal number density of olivine throughout the intrusion, the olivine-rich zones within the intrusion can be classified, in terms of their origin, as either crystal accumulation zone (AC zone) or crystal growth zone (GR zone). The growth of olivine crystals in the GR zone was apparently accompanied by an increase in MgO, FeO, and MnO concentrations to levels well above initial (i.e., the chilled marginal) values. This enrichment suggests that crystal growth occurred within a chemically open system in the sense that the increase in MgO content within the GR zone arose from material transfer between the boundary layer (the GR zone) and the overlying magma.

The Murotomisaki Gabbroic Complex is a sill-like layered intrusion of up to 220 m in thickness and is located at Cape Muroto, Kochi Prefecture, Japan. There are several olivine-rich zones within the intrusion, which may have been formed through accumulation of olivine crystals. However, up to now it has not been clear as to whether all of the olivine-rich zones formed in this way. To clarify this, we reinvestigated the layered structure by collecting a consistent data set of modal composition, crystal size, and crystal number density of olivine from throughout the intrusion. It was found out that nearly all of the olivine crystals, in terms of crystal numbers, occur in the basal olivine-rich zone (within 40 m of the base of the intrusion), and the average value of the crystal number density of olivine throughout the entire intrusion coincides with the crystal number density of olivine in the outermost parts of the lower and upper chilled margins. Hence, we conclude that most primary olivine phenocrysts within the magma settled under the influence of gravity and accumulated to form the basal olivine-rich zone. The crystal number density of olivine within the mid-level zones (40-100 m from the base of the intrusion) is much less than the initial values, as indicated by values recorded in the chilled margins. It is proved that the increase of the olivine mode within this zone is attributed not to the crystal accumulation of olivine but to the increase of the crystal size of olivine, i.e., the crystal growth. In this way, considering the mode, crystal size, and crystal number density of olivine throughout the intrusion, the olivine-rich zones within the intrusion can be classified, in terms of their origin, as either crystal accumulation zone (AC zone) or crystal growth zone (GR zone). The growth of olivine crystals in the GR zone was apparently accompanied by an increase in MgO, FeO, and MnO concentrations to levels well above initial (i.e., the chilled marginal) values. This enrichment suggests that crystal growth occurred within a chemically open system in the sense that the increase in MgO content within the GR zone arose from material transfer between the boundary layer (the GR zone) and the overlying magma.

収録刊行物

  • Journal of mineralogical and petrological sciences  

    Journal of mineralogical and petrological sciences 101(5), 223-239, 2006-10-01 

    日本鉱物科学会

参考文献:  43件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  2件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018106030
  • NII書誌ID(NCID)
    AA11460926
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13456296
  • データ提供元
    CJP書誌  CJP引用  IR  J-STAGE 
ページトップへ