Hybrid Energy Storage System Based on Compressed Air and Super-Capacitors with Maximum Efficiency Point Tracking (MEPT)

この論文にアクセスする

この論文をさがす

著者

抄録

This paper presents a hybrid energy storage system mainly based on Compressed Air, where the storage and withdrawal of energy are done within maximum efficiency conditions. As these maximum efficiency conditions impose the level of converted power, an intermittent time-modulated operation mode is applied to the thermodynamic converter to obtain a variable converted power. A smoothly variable output power is achieved with the help of a supercapacitive auxiliary storage device used as a filter. The paper describes the concept of the system, the power-electronic interfaces and especially the Maximum Efficiency Point Tracking (MEPT) algorithm and the strategy used to vary the output power. In addition, the paper introduces more efficient hybrid storage systems where the volumetric air machine is replaced by an oil-hydraulics and pneumatics converter, used under isothermal conditions. Practical results are also presented, recorded from a low-power air motor coupled to a small DC generator, as well as from a first prototype of the hydro-pneumatic system. Some economical considerations are also made, through a comparative cost evaluation of the presented hydro-pneumatic systems and a lead acid batteries system, in the context of a stand alone photovoltaic home application. This evaluation confirms the cost effectiveness of the presented hybrid storage systems.

収録刊行物

  • 電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society  

    電気学会論文誌. D, 産業応用部門誌 = The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society 126(7), 911-920, 2006-07-01 

    The Institute of Electrical Engineers of Japan

参考文献:  14件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018146727
  • NII書誌ID(NCID)
    AN10012320
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    09136339
  • NDL 記事登録ID
    8023636
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-1608
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ