A Hybrid Model for Fault Diagnosis Using Model Based Approaches and Support Vector Machine

この論文にアクセスする

この論文をさがす

著者

抄録

The procedure followed in chemical processes can be expressed in simple terms such as the flow of events from the raw materials to the product. To obtain the best final product, chemical engineers have to consider many factors including environmental effects, stability, economic considerations, and so on. In particular, when considering the stability if the process and the purity of the product, it is very important to detect any faults in the chemical process immediately.<BR>In this paper, a hybrid fault diagnosis model based on the signed digraph (SDG) and support vector machine (SVM) is proposed. By means of the system decomposition based on SDG, the local models of each measured variable are constructed and more accurate and fast models are using an SVM, which has no loss of information and shows good performance, in order to obtain the estimated value of the variable, which is then compared with the measured value in order to diagnose the fault. To verify the performance of the proposed model, the Tennessee Eastman (TE) Process was studied and the proposed method was found to demonstrate a good diagnosis capability compared with previous statistical methods.

収録刊行物

  • Journal of chemical engineering of Japan  

    Journal of chemical engineering of Japan 39(10), 1085-1095, 2006-10-01 

    The Society of Chemical Engineers, Japan

参考文献:  22件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018326867
  • NII書誌ID(NCID)
    AA00709658
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00219592
  • NDL 記事登録ID
    8513364
  • NDL 雑誌分類
    ZP1(科学技術--化学・化学工業)
  • NDL 請求記号
    Z53-R395
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ