Maximal regularity for the Stokes system on noncylindrical space-time domains

この論文にアクセスする

この論文をさがす

著者

抄録

We prove <i>L</i><sup><i>p</i></sup>-<i>L</i><sup><i>q</i></sup> maximal regularity estimates for the Stokes equations in spatial regions with moving boundary. Our result includes bounded and unbounded regions. The method relies on a reduction of the problem to an equivalent nonautonomous system on a cylindrical space-time domain. By applying suitable abstract results for nonautonomous Cauchy problems we show maximal regularity of the associated propagator which yields the result. The abstract results, also proved in this note, are a modified version of a nonautonomous maximal regularity result of Y. Giga, M. Giga, and H. Sohr and a suitable perturbation result. Finally we describe briefly the application to the special case of rotating regions.

収録刊行物

  • Journal of the Mathematical Society of Japan  

    Journal of the Mathematical Society of Japan 58(3), 617-641, 2006-07-01 

    The Mathematical Society of Japan

参考文献:  35件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018380990
  • NII書誌ID(NCID)
    AA0070177X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    00255645
  • NDL 記事登録ID
    7987041
  • NDL 雑誌分類
    ZM31(科学技術--数学)
  • NDL 請求記号
    Z53-A209
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ