単独マイクログリッドにおけるインバータを用いた分散型電源群による自律分散型需給制御 Autonomous Decentralized Control of Supply and Demand by Inverter Based Distributed Generations in Isolated Microgrid

この論文にアクセスする

この論文をさがす

著者

抄録

Recently, because of the environmental burden mitigation, energy conservations, energy security, and cost reductions, distributed generations are attracting our strong attention. These distributed generations (DGs) have been already installed to the distribution system, and much more DGs will be expected to be connected in the future. On the other hand, a new concept called "Microgrid" which is a small power supply network consisting of only DGs was proposed and some prototype projects are ongoing in Japan.<br>The purpose of this paper is to develop the three-phase instantaneous valued digital simulator of microgrid consisting of a lot of inverter based DGs and to develop a supply and demand control method in isolated microgrid.<br>First, microgrid is modeled using MATLAB/SIMULINK. We develop models of three-phase instantaneous valued inverter type CVCF generator, PQ specified generator, PV specified generator, PQ specified load as storage battery, photovoltaic generation, fuel cell and inverter load respectively. Then we propose an autonomous decentralized control method of supply and demand in isolated microgrid where storage batteries, fuel cells, photovoltaic generations and loads are connected. It is proposed here that the system frequency is used as a means to control DG output. By changing the frequency of the storage battery due to unbalance of supply and demand, all inverter based DGs detect the frequency fluctuation and change their own outputs. Finally, a new frequency control method in autonomous decentralized control of supply and demand is proposed. Though the frequency is used to transmit the information on the supply and demand unbalance to DGs, after the frequency plays the role, the frequency finally has to return to a standard value. To return the frequency to the standard value, the characteristic curve of the fuel cell is shifted in parallel. This control is carried out corresponding to the fluctuation of the load. The simulation shows that the frequency can be controlled well and has been made clear the effectiveness of the frequency control system.

収録刊行物

  • 電気学会論文誌. B, 電力・エネルギー部門誌 = The transactions of the Institute of Electrical Engineers of Japan. B, A publication of Power and Energy Society  

    電気学会論文誌. B, 電力・エネルギー部門誌 = The transactions of the Institute of Electrical Engineers of Japan. B, A publication of Power and Energy Society 127(1), 95-103, 2007-01-01 

    The Institute of Electrical Engineers of Japan

参考文献:  5件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  10件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018456445
  • NII書誌ID(NCID)
    AN10136334
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    03854213
  • NDL 記事登録ID
    8625833
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-794
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ