独立成分分析による分散型電源出力の推定 Estimating Technique for the Output of Distributed Generation Using Independent Component Analysis

この論文にアクセスする

この論文をさがす

著者

抄録

This paper presents the application of Independent Component Analysis (ICA) in power system. ICA is a method for finding unknown signals from observed ones. Given that observations are linear mixture of independent signal sources, then we can estimate signal sources from just only observations using ICA method. ICA is based on a linear-mixture model, in contrast, power system is a nonlinear system. However, applying DC power flow model, branch active power flows are represented as a linear mixture of active power injected into bus. DC power flow model matches ICA model. Therefore, in power systems, we can estimate bus injections from observed branch power flows using ICA. In this paper, we extend this idea to power estimation of Distributed Generation (DG) connected to radial distribution system. Note that ICA has two indeterminacies, scaling and permutation. To solve these matters, we use preliminary knowledge, DG maximum output power, connected node and network topology. We demonstrate the validity of this approach on a 69-bus distribution system, and then discuss the results with error analysis and spectrum analysis.

収録刊行物

  • 電気学会論文誌. B, 電力・エネルギー部門誌 = The transactions of the Institute of Electrical Engineers of Japan. B, A publication of Power and Energy Society  

    電気学会論文誌. B, 電力・エネルギー部門誌 = The transactions of the Institute of Electrical Engineers of Japan. B, A publication of Power and Energy Society 127(1), 217-223, 2007-01-01 

    The Institute of Electrical Engineers of Japan

参考文献:  12件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  3件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018456635
  • NII書誌ID(NCID)
    AN10136334
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    03854213
  • NDL 記事登録ID
    8626094
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-794
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ