Fabrication of Functionally Graded Ti_3SiC_2-TiC Binary-Phase Material

この論文にアクセスする

この論文をさがす

著者

抄録

Ti<SUB>3</SUB>SiC<SUB>2</SUB>–TiC binary-phase material was investigated with the aim of developing a new hard product. The starting material for the synthesis was prepared by compounding raw powders of Ti, Si and TiC at molar ratios of 1:1:<I>x</I> (<I>x</I>=1.8–7.0). The products were synthesized by sintering and the structures of the samples produced were examined. The product obtained was single-phase Ti<SUB>3</SUB>SiC<SUB>2</SUB> when <I>x</I> was 2.0 or less and a Ti<SUB>3</SUB>SiC<SUB>2</SUB>–TiC binary-phase structure when <I>x</I> was more than 2.0. The mass fraction of TiC in the binary-phase structure increased with increasing <I>x</I>. The optimum sintering temperatures for densification were different for the different synthesized structures: the Ti<SUB>3</SUB>SiC<SUB>2</SUB> single-phase structure was well densified at up to 1673 K, whereas higher temperature was required to dinsify the Ti<SUB>3</SUB>SiC<SUB>2</SUB>–TiC binary-phase structure. These results suggest the possibility of producing Ti<SUB>3</SUB>SiC<SUB>2</SUB>–TiC functionally graded materials. The traveling-zone sintering method permits integrated sintering of materials at variable temperatures. Powder mixtures with TiC contents from 1.8 to 7.0 mole were layered in the same mold and sintered at variable temperatures from 1643 to 1733 K. The synthesized structure was successfully graded, as in the case of individual synthesis of each of the compounds. The hardness of the produced sample showed a tendency to increase with increasing mass fraction of TiC. These results prove that the traveling-zone sintering method has the potential to fabricate functionally graded materials that require variable sintering temperatures.

収録刊行物

  • Materials transactions  

    Materials transactions 48(2), 139-142, 2007-02-01 

    The Japan Institute of Metals and Materials

参考文献:  15件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018508524
  • NII書誌ID(NCID)
    AA1151294X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13459678
  • NDL 記事登録ID
    8623608
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z53-J286
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ