Effect of Annealing Temperature on Dielectric Constant and Bonding Structure of Low-$k$ SiCOH Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

この論文にアクセスする

この論文をさがす

著者

    • Lee Sungwoo Lee Sungwoo
    • Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Yang Jaeyoung Yang Jaeyoung
    • Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Yeo Sanghak [他] Yeo Sanghak
    • Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Lee Jaewon
    • Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Jung Donggeun
    • Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Boo Jin-hyo
    • Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Kim Hyoungsub
    • Department of Materials Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    • Chae Heeyeop
    • Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

抄録

We investigated the effect of annealing temperature on the properties of SiCOH films deposited by plasma-enhanced chemical vapor deposition using or a mixture of Si–O containing and hydrocarbon precursors, decamethyl-cyclopentasiloxane (DMCPSO-C10H30O5Si5) and cyclohexane (CHex-C6H12). These SiCOH films were deposited at pressures of 0.6 and 1.5 Torr and the as-deposited SiCOH films were subjected to annealing temperatures from 25 to 500 °C in a furnace for 1 h in N2 ambient at a pressure of 1 atm. The relative dielectric constants, $k$, of the SiCOH films deposited at 0.6 and 1.5 Torr were 2.76 and 2.26, respectively, before the annealing process. The subsequent annealing of the SiCOH film at 500 °C further reduced the $k$ values to as low as 2.31 and 1.85, respectively. Decreases in the refractive index, hardness, and modulus were observed as the annealing temperature increased to 450 °C. However, further increasing annealing temperature to 500 °C caused the refractive index, hardness, and modulus to increase again. Trends of decreases in both the hardness and modulus with increasing annealing temperature were found. The refractive index and the film thickness retention also decreased with increasing annealing temperature. The change in the $k$ value as a function of the annealing temperature was correlated with the change in the Fourier transform infrared absorption peaks of C–Hx, Si–CH3, and Si–O related groups. As the annealing temperature increased, the intensity of both the CHx and Si–CH3 peaks decreased, respectively. In particular, the C–H2 (asymmetric and symmetric) peaks provide direct evidence of the presence of ethylene groups in the SiCOH films. Thus the decrease in intensity of the peaks corresponding to the CHx groups and Si–O cage structure in the SiCOH films was considered to be responsible for lowering they dielectric constant, refractive index, hardness and modulus of the films. The leakage current density of the SiCOH films at 1 MV/cm is obtained ${\sim}10^{-8}$ A/cm2 with the 450 °C annealed films, which can be considered as an acceptable leakage current level for the interconnect application.

収録刊行物

  • Japanese journal of applied physics. Pt. 1, Regular papers & short notes  

    Japanese journal of applied physics. Pt. 1, Regular papers & short notes 46(2), 536-541, 2007-02-15 

    Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physics

参考文献:  23件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018544816
  • NII書誌ID(NCID)
    AA10457675
  • 本文言語コード
    EN
  • 資料種別
    ART
  • 雑誌種別
    大学紀要
  • ISSN
    0021-4922
  • NDL 記事登録ID
    8650994
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z53-A375
  • データ提供元
    CJP書誌  NDL  JSAP 
ページトップへ