鋼繊維とPET繊維補強モルタルの4点曲げ特性 Characteristics of Steel and PET Fiber-Reinforced Mortar in Four-Point Bending

この論文にアクセスする

この論文をさがす

著者

抄録

Characteristics of two types of fiber-reinforced mortar in four-point bending are discussed and compared in this paper. One is steel fiber-reinforced mortar that was introduced to Japan in 1960s. Another is PET (Polyethylene Terephthalate) fiber-reinforced mortar that was recently invented and right now information about its characteristics is still very limited.<BR>Two types of fiber-reinforced mortar were tested in a servo-controlled testing machine to obtain a complete load-deflection curve or a curve in pre and post failure regions. Photographs of a sample were taken in the four-point bending test to evaluate the crack length and the crack opening displacement (COD). <BR>Testing results indicated that the bending strength of two types of fiber-reinforced mortar was increased considerably compared with that of a plain mortar. Peak and residual strength of PET fiber-reinforced mortar was found to be slightly weaker than that of steel fiber-reinforced mortar, however, PET fiber elongated easily, therefore wider crack width was permissible. It was also shown that the peak strength can be theoretically estimated by the stress-strain curve obtained in uniaxial tensile test as pointed out formerly by Okubo et al.<BR>Right now, usage of PET fiber-reinforced mortar is still very limited, however, the results obtained in this study indicate promising future of PET fiber-reinforced mortar. Especially, it is considered to be appropriate for usage under severe environmental conditions and construction in narrow space such as path through forest or winding road.

収録刊行物

  • Journal of MMIJ : journal of the Mining and Materials Processing Institute of Japan  

    Journal of MMIJ : journal of the Mining and Materials Processing Institute of Japan 123(2), 75-81, 2007-02-25 

    The Mining and Materials Processing Institute of Japan

参考文献:  24件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018576832
  • NII書誌ID(NCID)
    AA12188381
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    18816118
  • NDL 記事登録ID
    8727710
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z17-315
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ