Sensitivity of Micro Cantilever Mass Sensor Transduced by PZT Film

この論文にアクセスする

この論文をさがす

著者

抄録

Piezoelectric thin film transduced micro resonator offers competitive potential applications in mass sensing technology because of its low driving-voltage, self-actuation self-sensation capability and better impedance-matching with electronics. In this paper, the authors fabricated PZT cantilevers with different geometries and PZT thicknesses. Then the authors investigated the essential aspects of the PZT cantilever for mass-detection sensitivity from the viewpoint of mechanical quality factor of the cantilever and piezoelectric induced output of the PZT film. It was found that the mass-detection sensitivity of the cantilever was improved at thicker PZT film under atmospheric conditions by taking advantage of quality factor. The sensitivity can be further improved several times when pressure was reduced into the molecular flow region and the intrinsic region. For a given material properties and structural layer thickness, the cantilever with thicker PZT film was expected to exhibit high open circuit voltage output, while the cantilever with thinner PZT film was expected to show high piezoelectric charge output. In addition, the residual stress of PZT film was found decreased at thicker film. The effects of residual stress in PZT film on cantilever's sensitivity were therefore discussed in this paper.

収録刊行物

  • 電気学会論文誌. E, センサ・マイクロマシン準部門誌 = The transactions of the Institute of Electrical Engineers of Japan. A publication of Sensors and Micromachines Society  

    電気学会論文誌. E, センサ・マイクロマシン準部門誌 = The transactions of the Institute of Electrical Engineers of Japan. A publication of Sensors and Micromachines Society 127(3), 126-130, 2007-03-01 

    The Institute of Electrical Engineers of Japan

参考文献:  23件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018737718
  • NII書誌ID(NCID)
    AN1052634X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13418939
  • NDL 記事登録ID
    8728650
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-B380
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ