Effect of Discharge Parameters on Electrohydrodynamic Flow with Asymmetric Discharge Electrodes

この論文にアクセスする

この論文をさがす

著者

抄録

The characteristics of electrohydrodynamic (EHD) flow induced by an asymmetric surface barrier discharge were investigated by changing the discharge parameters, such as transferred charge, sustaining voltage, and driving frequency, and so on. The discharge induced the EHD flow close to the dielectric surface, and the flow velocity was up to several m/sec. There was a strong polarity effect on the peak value of the discharge current. Intense microdischarges were generated when the relative potential of the buried electrode was negative to the exposed electrode, whereas only weak microdischarges were measured when the buried electrode was positive. The mean flow velocity was found to be proportional to the discharge power that was nearly a quadratic function of the sustaining voltage and a linear function of the driving frequency. The increasing rate of the flow velocity for the discharge power was high in higher power operations, where the sustaining voltage was increased by higher voltage application between the electrodes. The flow velocity was proportional to the total amount of electric charges, but it was largely affected by the increase of the sustaining voltage.

収録刊行物

  • 電気学会論文誌. A, 基礎・材料・共通部門誌 = The transactions of the Institute of Electrical Engineers of Japan. A, A publication of Fundamentals and Materials Society  

    電気学会論文誌. A, 基礎・材料・共通部門誌 = The transactions of the Institute of Electrical Engineers of Japan. A, A publication of Fundamentals and Materials Society 127(3), 133-138, 2007-03-01 

    The Institute of Electrical Engineers of Japan

参考文献:  9件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

被引用文献:  2件

被引用文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10018738612
  • NII書誌ID(NCID)
    AN10136312
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    03854205
  • NDL 記事登録ID
    8727251
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-793
  • データ提供元
    CJP書誌  CJP引用  NDL  J-STAGE 
ページトップへ