Comparison of Co Films Deposited by Remote Plasma Atomic Layer Deposition Method with Cyclopentadienylcobalt Dicarbonyl [CpCo(CO)2] and Dicobalt Octacarbonyl [Co2(CO)8]

この論文にアクセスする

この論文をさがす

著者

    • Park Taeyong
    • Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea
    • Lee Youngjin
    • R&D Division, Hynix Semiconductor Inc., San 136-1, Ami-ri, Bubal-eup, Icheon-si, Kyoungi-do 467-701, Korea
    • Kim Jeongtae
    • R&D Division, Hynix Semiconductor Inc., San 136-1, Ami-ri, Bubal-eup, Icheon-si, Kyoungi-do 467-701, Korea
    • Yeom Seungjin
    • R&D Division, Hynix Semiconductor Inc., San 136-1, Ami-ri, Bubal-eup, Icheon-si, Kyoungi-do 467-701, Korea
    • Jeon Hyeongtag
    • Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea

抄録

Co films were deposited by a remote plasma atomic layer deposition (ALD) method using either cyclopentadienylcobalt dicarbonyl [CpCo(CO)2] or dicobalt octacarbonyl [Co2(CO)8] as the Co precursor. The Co films deposited with the Co2(CO)8 precursor showed a lower ALD process window (75–110 °C) and higher growth rate (${\sim}1.2$ Å/cycle) than the Co films deposited with CpCo(CO)2 which had a process window of 125–175 °C and a growth rate of ${\sim}1.1$ Å/cycle. The Co films deposited using CpCo(CO)2 showed an oxygen content of less than 1% with both the H2 and N2 plasma and about 13% carbon with the N2 plasma and about 7–8% carbon with the H2 plasma. In the case of Co2(CO)8, the carbon and oxygen contents were ${\sim}15$ and ${\sim}2$% with the H2 plasma, and ${\sim}8$ and ${\sim}21$% with the N2 plasma, respectively. The carbon impurities in the Co films deposited with CpCo(CO)2 had a significant number of C–H bonds while Co–C bonds were dominant in the Co films deposited with Co2(CO)8. The retardation of silicide formation temperature up to 100 °C for the Co films deposited with Co2(CO)8 can be explained by high carbon content including Co–C bonds.

収録刊行物

  • Japanese journal of applied physics. Pt. 2, Letters

    Japanese journal of applied physics. Pt. 2, Letters 46(8), L173-L176, 2007-03-25

    Japan Society of Applied Physics

参考文献:  19件中 1-19件 を表示

  • <no title>

    LI Z.

    Electrochem. Solid-State Lett. 8, G182, 2005

    被引用文献1件

  • <no title>

    CHIONCEL M. F.

    Chem. Vap. Deposition 11, 235, 2005

    被引用文献1件

  • <no title>

    CHOI S. W.-K.

    Chem. Mater. 9, 1191, 1997

    被引用文献1件

  • <no title>

    LEE J.

    J. Electrochem. Soc. 153, G539, 2006

    被引用文献1件

  • <no title>

    LIM B. S.

    Nature 406, 1032, 2000

    被引用文献1件

  • <no title>

    LESKELA M.

    Angew. Chem., Int. Ed. 42, 5548, 2003

    被引用文献1件

  • <no title>

    SUNTOLA T.

    Handbook of Thin Film Process Technology, 1995

    被引用文献1件

  • <no title>

    RITALA M.

    Nanotechnology 10, 19, 1999

    被引用文献1件

  • <no title>

    KIM J. Y.

    J. Electrochem. Soc. 152, G29, 2005

    被引用文献1件

  • <no title>

    MURARKA S. P.

    Intermetallics 3, 173, 1995

    被引用文献4件

  • <no title>

    KO Y. K.

    Electrochem. Solid-State Lett. 6, C141, 2003

    被引用文献1件

  • <no title>

    LAU Y. M.

    J. Vac. Sci. Technol. A 20, 1295, 2002

    被引用文献2件

  • <no title>

    DORMANS G. J. M.

    J. Cryst. Growth 114, 364, 1991

    被引用文献1件

  • <no title>

    DORMANS G. J. M.

    J. Cryst. Growth 108, 806, 1991

    被引用文献1件

  • <no title>

    TANNENBAUM R.

    J. Organomet. Chem. 570, 39, 1998

    被引用文献1件

  • <no title>

    WEST G. A.

    Appl. Phys. Lett. 53, 740, 1988

    被引用文献1件

  • <no title>

    RHEE H. S.

    J. Electrochem. Soc. 146, 2720, 1999

    被引用文献1件

  • <no title>

    YE D.-X.

    Thin Solid Films 485, 95, 2005

    DOI 被引用文献1件

  • <no title>

    RHEE H. S.

    J. Appl. Phys. 86, 3452, 1999

    被引用文献1件

各種コード

  • NII論文ID(NAID)
    10018902957
  • NII書誌ID(NCID)
    AA10650595
  • 本文言語コード
    EN
  • 資料種別
    SHO
  • ISSN
    0021-4922
  • NDL 記事登録ID
    8695294
  • NDL 雑誌分類
    ZM35(科学技術--物理学)
  • NDL 請求記号
    Z54-J337
  • データ提供元
    CJP書誌  NDL  JSAP 
ページトップへ