擬似人工生命アルゴリズムに基づく相関ルール抽出の高速化手法 Techniques of Acceleration for Association Rule Induction with Pseudo Artificial Life Algorithm

この論文にアクセスする

この論文をさがす

著者

    • 萩原 将文 HAGIWARA Masafumi
    • 慶應義塾大学理工学部情報工学科 Department of Information and Computer Science, Faculty of Science and Technology, Keio University

抄録

Frequent patterns mining is one of the important problems in data mining. Generally, the number of potential rules grows rapidly as the size of database increases. It is therefore hard for a user to extract the association rules. To avoid such a difficulty, we propose a new method for association rule induction with pseudo artificial life approach. The proposed method is to decide whether there exists an item set which contains N or more items in two transactions. If it exists, a series of item sets which are contained in the part of transactions will be recorded. The iteration of this step contributes to the extraction of association rules. It is not necessary to calculate the huge number of candidate rules. In the evaluation test, we compared the extracted association rules using our method with the rules using other algorithms like Apriori algorithm. As a result of the evaluation using huge retail market basket data, our method is approximately 10 and 20 times faster than the Apriori algorithm and many its variants.

収録刊行物

  • 電気学会論文誌. C, 電子・情報・システム部門誌 = The transactions of the Institute of Electrical Engineers of Japan. C, A publication of Electronics, Information and System Society  

    電気学会論文誌. C, 電子・情報・システム部門誌 = The transactions of the Institute of Electrical Engineers of Japan. C, A publication of Electronics, Information and System Society 128(6), 997-1004, 2008-06-01 

    The Institute of Electrical Engineers of Japan

参考文献:  23件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021132842
  • NII書誌ID(NCID)
    AN10065950
  • 本文言語コード
    JPN
  • 資料種別
    ART
  • ISSN
    03854221
  • NDL 記事登録ID
    9532089
  • NDL 雑誌分類
    ZN31(科学技術--電気工学・電気機械工業)
  • NDL 請求記号
    Z16-795
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ