Effect of Tool-Modeling Accuracy on Square-Cup Deep-Drawing Simulation

この論文にアクセスする

この論文をさがす

著者

抄録

In this study, the effect of tool-modeling accuracy on a finite-element simulation of a square-cup deep-drawing process is examined. First, the accuracy of tool modeling using a conventional approach, in which polyhedral surfaces are used, is compared with that of an alternative approach, in which the quadratic parametric surfaces proposed by Nagata [Nagata, Comput. Aided Geom. D <B>22</B> (2005) 327–347] (Nagata patch) are used. It is clear that the Nagata patch yields a much more accurate tool geometry than the conventional approach with regard to the shape and normal vectors of the tool. Next, simulations of the square-cup deep-drawing process are carried out for die models with various numbers of tool elements. It was found that a polyhedral model with at least 10 divisions at the die shoulder is required to carry out accurate simulations. The simulated result of the Nagata patch model with two patches at the die shoulder corresponds well to that of the polyhedral model with more than 10 patches. From this point of view, it is concluded that the number of tool elements can be markedly decreased using the Nagata patch model. In the present case, the number of tool elements can be reduced to about 10% of that of the polyhedral model.

収録刊行物

  • Materials transactions  

    Materials transactions 49(2), 278-283, 2008-02-01 

    The Japan Institute of Metals and Materials

参考文献:  11件

参考文献を見るにはログインが必要です。ユーザIDをお持ちでない方は新規登録してください。

各種コード

  • NII論文ID(NAID)
    10021144092
  • NII書誌ID(NCID)
    AA1151294X
  • 本文言語コード
    ENG
  • 資料種別
    ART
  • ISSN
    13459678
  • NDL 記事登録ID
    9354358
  • NDL 雑誌分類
    ZP41(科学技術--金属工学・鉱山工学)
  • NDL 請求記号
    Z53-J286
  • データ提供元
    CJP書誌  NDL  J-STAGE 
ページトップへ